diff options
author | Arun Isaac | 2022-01-08 11:41:41 +0530 |
---|---|---|
committer | Arun Isaac | 2022-01-08 12:41:03 +0530 |
commit | f5b964fc8b6ad1f8b40db00ac38dfd150c2e07c5 (patch) | |
tree | d413bb401cb0c6a4c0ccbbcb8dff3c461a2cffec /python | |
parent | 1382f00db69c523b37c1c5b6d1480b772e33cc44 (diff) | |
download | nsmc-f5b964fc8b6ad1f8b40db00ac38dfd150c2e07c5.tar.gz nsmc-f5b964fc8b6ad1f8b40db00ac38dfd150c2e07c5.tar.lz nsmc-f5b964fc8b6ad1f8b40db00ac38dfd150c2e07c5.zip |
Port to python.
* python/nsmc.py: New file.
Diffstat (limited to 'python')
-rw-r--r-- | python/nsmc.py | 193 |
1 files changed, 193 insertions, 0 deletions
diff --git a/python/nsmc.py b/python/nsmc.py new file mode 100644 index 0000000..27186e0 --- /dev/null +++ b/python/nsmc.py @@ -0,0 +1,193 @@ +# nsmc --- n-sphere Monte Carlo method +# Copyright © 2022 Arun I <arunisaac@systemreboot.net> +# Copyright © 2022 Murugesan Venkatapathi <murugesh@iisc.ac.in> +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see +# <https://www.gnu.org/licenses/>. + +from math import exp, fabs, inf, isclose, log, pi, sqrt +from numpy import arange, arcsin, polyval, prod, random, sin, sum, where +from numpy.linalg import norm + +from scipy.integrate import quad +from scipy.special import betaincinv, gamma, gammainc, gammaln +from sambal import random_on_disk, random_on_sphere + +def ln_ball_volume(n): + return n/2*log(pi) - gammaln(1 + n/2) + +def ball_volume(n): + return exp(ln_ball_volume(n)) + +def ln_ball_surface_area(n): + return log(n) + ln_ball_volume(n) + +def ball_surface_area(n): + return n * ball_volume(n) + +def lower_incomplete_gamma(a, x): + return gamma(a) * gammainc(a, x) + +# Extent oracles and associated true volumes + +def make_bernoulli_extent_oracle(p, r0, r1): + return lambda x: r1 if binomial(1, p) else r0 + +def bernoulli_true_volume(p, r0, r1, n): + return ball_volume(n) * (p*r1**n + (1-p)*r0**n) + +def make_uniform_extent_oracle(a, b): + return lambda x: random.uniform(a, b) + +# TODO: Verify the accuracy of this function for non-trivial a, b. +def uniform_true_volume(a, b, n): + return ball_volume(n) * (b**(n+1)/(n+1)) - (a**(n+1)/(n+1)) + +def make_beta_extent_oracle(alpha, beta): + return lambda x: random.beta(alpha, beta) + +def beta_true_volume(alpha, beta, n): + r = arange(n) + return ball_volume(n) * prod((alpha + r) / (alpha + beta + r)) + +def make_cube_extent_oracle(n, edge): + return lambda x: edge / 2 / norm(x, inf) + +def cube_true_volume(n, edge): + return edge**n + +def make_spheroid_extent_oracle(n, eccentricity): + return lambda x: 1 / sqrt((x[0]/eccentricity)**2 + norm(x[1:])**2) + +def spheroid_true_volume(n, eccentricity): + return ball_volume(n) * eccentricity + +def make_ellipsoid_extent_oracle(n, axes): + return lambda x: 1 / norm(x / axes) + +def ellipsoid_true_volume(n, axes): + return ball_volume(n) * prod(axes) + +# Integrands and associated true integrals + +def gaussian_integrand(): + return lambda r, x: exp(-r*r/2) + +def gaussian_true_integral(n, max_extent): + return (2**(n/2 - 1) * ball_surface_area(n) * \ + (max_extent*lower_incomplete_gamma(n/2, max_extent**2/2) \ + - sqrt(2)*lower_incomplete_gamma((n+1)/2, max_extent**2/2))) \ + / max_extent + +def polynomial_integrand(coefficients): + return lambda r, x: polyval(coefficients, r) + +def polynomial_true_integral(n, max_extent, coefficients): + m = len(coefficients) + return ball_surface_area(n) * max_extent**n * \ + polyval([ak/(n+m-1-index)/(n+m-index) for index, ak in enumerate(coefficients)], + max_extent) + +def x_coordinate_integrand(): + return lambda r, x: fabs(r*x[0]) + +def x_coordinate_true_integral(n, max_extent): + return max_extent**(n+1) * ball_surface_area(n+3) / 2 / pi**2 / (n+2) + +# Volume estimation + +def accumulate_stats(x, n, mean): + return n + 1, (mean*n + x)/(n + 1) + +def volume(extent_oracle, true_volume, n, rtol, window_length=1000): + vn = ln_ball_volume(n) + vol = 0 + samples = 0 + accurate_estimates = 0 + while accurate_estimates < window_length: + x = random_on_sphere(n) + samples, vol = accumulate_stats(exp(vn + n*log(extent_oracle(x))), samples, vol) + accurate_estimates = accurate_estimates + 1 if isclose(vol, true_volume, rel_tol=rtol) else 0 + return vol, samples + +# Integral estimation + +def integral_per_direction(integrand, direction, n, radius): + return ball_surface_area(n) * quad(lambda r: r**(n-1) * integrand(r, direction), + 0, radius)[0] + +def integral(integrand, extent_oracle, true_integral, n, rtol, window_length=1000): + accurate_estimates = 0 + integ = 0 + samples = 0 + while accurate_estimates < window_length: + x = random_on_sphere(n) + samples, integ = accumulate_stats(integral_per_direction(integrand, x, n, extent_oracle(x)), + samples, integ) + accurate_estimates = accurate_estimates + 1 if isclose(integ, true_integral, rel_tol=rtol) else 0 + return integ, samples + +# Volume estimation with importance sampling + +def solid_angle_fraction_to_planar_angle(solid_angle_fraction, dim): + """Return the planar angle for a given solid angle fraction.""" + alpha = (dim - 1) / 2 + beta = 1/2 + return where(solid_angle_fraction < 1/2, + arcsin(sqrt(betaincinv(alpha, beta, 2*solid_angle_fraction))), + pi - arcsin(sqrt(betaincinv(alpha, beta, 2*(1-solid_angle_fraction))))) + +def hollow_cone_random_vector(axis, minimum_planar_angle, maximum_planar_angle): + """Return a random vector uniformly distributed on a spherical +cap. The random planar angle is generated using rejection sampling. + + """ + # We apply the log function just to prevent the floats from + # underflowing. + dim = axis.size + box_height = (dim-2)*log(sin(min(maximum_planar_angle, pi/2))) + while True: + theta = random.uniform(minimum_planar_angle, maximum_planar_angle) + f = box_height + log(random.random()) + if f < (dim-2)*log(sin(theta)): + break + return random_on_disk(axis, theta) + +def volume_cone(extent_oracle, mean, omega_min, omega_max, samples): + n = mean.size + vn = ln_ball_volume(n) + theta_min = solid_angle_fraction_to_planar_angle(omega_min, n) + theta_max = solid_angle_fraction_to_planar_angle(omega_max, n) + samples_done = 0 + vol = 0 + for i in range(samples): + x = hollow_cone_random_vector(mean, theta_min, theta_max) + samples_done, vol = accumulate_stats(exp(vn + n*log(extent_oracle(x))), + samples_done, vol) + return vol * (omega_max - omega_min) + +def volume_importance(extent_oracle, mean, samples_per_cone, solid_angle_factor, + solid_angle_threshold_exponent_factor): + vol = 0 + omega_max = 0.5 + samples = 0 + n = mean.size + while omega_max > 2**(-n*solid_angle_threshold_exponent_factor): + omega_min = omega_max / solid_angle_factor + vol = vol + volume_cone(extent_oracle, mean, omega_min, omega_max, samples_per_cone) + samples = samples + samples_per_cone + omega_max = omega_min + vol = vol + volume_cone(extent_oracle, mean, 0, omega_max, samples_per_cone) + samples = samples + samples_per_cone + return vol, samples |