diff options
author | Arun Isaac | 2021-03-15 14:52:03 +0530 |
---|---|---|
committer | Arun Isaac | 2021-03-15 15:27:24 +0530 |
commit | d771e8524094493f8a7c8b25b660b18acf837f92 (patch) | |
tree | 706db3a717ed1d3cf5a36d5a2591f5af730216d7 /contrib | |
parent | d5ab1ba4a4373821bc27a35f2a5f7dcb9e955dd4 (diff) | |
download | nsmc-d771e8524094493f8a7c8b25b660b18acf837f92.tar.gz nsmc-d771e8524094493f8a7c8b25b660b18acf837f92.tar.lz nsmc-d771e8524094493f8a7c8b25b660b18acf837f92.zip |
Implement simplified cone sampling algorithm.
* contrib/cone-vector.py: Don't import tan.
(random_vector_on_spherical_cap): Implement simplified algorithm that
directly samples the surface of the sphere instead of sampling a disk
and projecting it onto the surface.
Diffstat (limited to 'contrib')
-rw-r--r-- | contrib/cone-vector.py | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/contrib/cone-vector.py b/contrib/cone-vector.py index 9de71d8..1f28d07 100644 --- a/contrib/cone-vector.py +++ b/contrib/cone-vector.py @@ -16,7 +16,7 @@ # along with this program. If not, see # <https://www.gnu.org/licenses/>. -from numpy import arcsin, cos, dot, empty, ones, sin, sqrt, tan, pi, where, zeros +from numpy import arcsin, cos, dot, empty, ones, sin, sqrt, pi, where, zeros from numpy.random import randn, random from numpy.linalg import norm from scipy.special import betainc, betaincinv, gamma @@ -54,12 +54,12 @@ def rotate_from_nth_canonical (x, axis): def random_vector_on_spherical_cap (axis, maximum_planar_angle): dim = axis.size maximum_solid_angle_fraction = planar_angle2solid_angle_fraction(maximum_planar_angle, dim) + solid_angle_fraction = maximum_solid_angle_fraction*random() + planar_angle = solid_angle_fraction2planar_angle(solid_angle_fraction, dim) x = empty(dim) - x[:-1] = random_vector_on_sphere(dim - 1) \ - * cos(maximum_planar_angle) \ - * tan(solid_angle_fraction2planar_angle(maximum_solid_angle_fraction*random(), dim)) - x[-1] = cos(maximum_planar_angle) - return rotate_from_nth_canonical(x / norm(x), axis) + x[:-1] = sin(planar_angle) * random_vector_on_sphere(dim - 1) + x[-1] = cos(planar_angle) + return rotate_from_nth_canonical(x, axis) # Sample code exercising the above functions dim = 100 |