# nsmc --- n-sphere Monte Carlo method # Copyright © 2022 Arun I <arunisaac@systemreboot.net> # Copyright © 2022 Murugesan Venkatapathi <murugesh@iisc.ac.in> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <https://www.gnu.org/licenses/>. from math import exp, fabs, inf, isclose, log, pi, sqrt from numpy import arange, arcsin, polyval, prod, random, sin, sum, where from numpy.linalg import norm from scipy.integrate import quad from scipy.special import betaincinv, gamma, gammainc, gammaln from sambal import random_on_disk, random_on_sphere def ln_ball_volume(n): return n/2*log(pi) - gammaln(1 + n/2) def ball_volume(n): return exp(ln_ball_volume(n)) def ln_ball_surface_area(n): return log(n) + ln_ball_volume(n) def ball_surface_area(n): return n * ball_volume(n) def lower_incomplete_gamma(a, x): return gamma(a) * gammainc(a, x) # Extent oracles and associated true volumes def make_bernoulli_extent_oracle(p, r0, r1): return lambda x: r1 if binomial(1, p) else r0 def bernoulli_true_volume(p, r0, r1, n): return ball_volume(n) * (p*r1**n + (1-p)*r0**n) def make_uniform_extent_oracle(a, b): return lambda x: random.uniform(a, b) # TODO: Verify the accuracy of this function for non-trivial a, b. def uniform_true_volume(a, b, n): return ball_volume(n) * (b**(n+1)/(n+1)) - (a**(n+1)/(n+1)) def make_beta_extent_oracle(alpha, beta): return lambda x: random.beta(alpha, beta) def beta_true_volume(alpha, beta, n): r = arange(n) return ball_volume(n) * prod((alpha + r) / (alpha + beta + r)) def make_cube_extent_oracle(n, edge): return lambda x: edge / 2 / norm(x, inf) def cube_true_volume(n, edge): return edge**n def make_spheroid_extent_oracle(n, eccentricity): return lambda x: 1 / sqrt((x[0]/eccentricity)**2 + norm(x[1:])**2) def spheroid_true_volume(n, eccentricity): return ball_volume(n) * eccentricity def make_ellipsoid_extent_oracle(n, axes): return lambda x: 1 / norm(x / axes) def ellipsoid_true_volume(n, axes): return ball_volume(n) * prod(axes) # Integrands and associated true integrals def gaussian_integrand(): return lambda r, x: exp(-r*r/2) def gaussian_true_integral(n, max_extent): return (2**(n/2 - 1) * ball_surface_area(n) * \ (max_extent*lower_incomplete_gamma(n/2, max_extent**2/2) \ - sqrt(2)*lower_incomplete_gamma((n+1)/2, max_extent**2/2))) \ / max_extent def polynomial_integrand(coefficients): return lambda r, x: polyval(coefficients, r) def polynomial_true_integral(n, max_extent, coefficients): m = len(coefficients) return ball_surface_area(n) * max_extent**n * \ polyval([ak/(n+m-1-index)/(n+m-index) for index, ak in enumerate(coefficients)], max_extent) def x_coordinate_integrand(): return lambda r, x: fabs(r*x[0]) def x_coordinate_true_integral(n, max_extent): return max_extent**(n+1) * ball_surface_area(n+3) / 2 / pi**2 / (n+2) # Volume estimation def accumulate_stats(x, n, mean): return n + 1, (mean*n + x)/(n + 1) def volume(extent_oracle, true_volume, n, rtol, window_length=1000): vn = ln_ball_volume(n) vol = 0 samples = 0 accurate_estimates = 0 while accurate_estimates < window_length: x = random_on_sphere(n) samples, vol = accumulate_stats(exp(vn + n*log(extent_oracle(x))), samples, vol) accurate_estimates = accurate_estimates + 1 if isclose(vol, true_volume, rel_tol=rtol) else 0 return vol, samples # Integral estimation def integral_per_direction(integrand, direction, n, radius): return ball_surface_area(n) * quad(lambda r: r**(n-1) * integrand(r, direction), 0, radius)[0] def integral(integrand, extent_oracle, true_integral, n, rtol, window_length=1000): accurate_estimates = 0 integ = 0 samples = 0 while accurate_estimates < window_length: x = random_on_sphere(n) samples, integ = accumulate_stats(integral_per_direction(integrand, x, n, extent_oracle(x)), samples, integ) accurate_estimates = accurate_estimates + 1 if isclose(integ, true_integral, rel_tol=rtol) else 0 return integ, samples # Volume estimation with importance sampling def solid_angle_fraction_to_planar_angle(solid_angle_fraction, dim): """Return the planar angle for a given solid angle fraction.""" alpha = (dim - 1) / 2 beta = 1/2 return where(solid_angle_fraction < 1/2, arcsin(sqrt(betaincinv(alpha, beta, 2*solid_angle_fraction))), pi - arcsin(sqrt(betaincinv(alpha, beta, 2*(1-solid_angle_fraction))))) def hollow_cone_random_vector(axis, minimum_planar_angle, maximum_planar_angle): """Return a random vector uniformly distributed on a spherical cap. The random planar angle is generated using rejection sampling. """ # We apply the log function just to prevent the floats from # underflowing. dim = axis.size box_height = (dim-2)*log(sin(min(maximum_planar_angle, pi/2))) while True: theta = random.uniform(minimum_planar_angle, maximum_planar_angle) f = box_height + log(random.random()) if f < (dim-2)*log(sin(theta)): break return random_on_disk(axis, theta) def volume_cone(extent_oracle, mean, omega_min, omega_max, samples): n = mean.size vn = ln_ball_volume(n) theta_min = solid_angle_fraction_to_planar_angle(omega_min, n) theta_max = solid_angle_fraction_to_planar_angle(omega_max, n) samples_done = 0 vol = 0 for i in range(samples): x = hollow_cone_random_vector(mean, theta_min, theta_max) samples_done, vol = accumulate_stats(exp(vn + n*log(extent_oracle(x))), samples_done, vol) return vol * (omega_max - omega_min) def volume_importance(extent_oracle, mean, samples_per_cone, solid_angle_factor, solid_angle_threshold_exponent_factor): vol = 0 omega_max = 0.5 samples = 0 n = mean.size while omega_max > 2**(-n*solid_angle_threshold_exponent_factor): omega_min = omega_max / solid_angle_factor vol = vol + volume_cone(extent_oracle, mean, omega_min, omega_max, samples_per_cone) samples = samples + samples_per_cone omega_max = omega_min vol = vol + volume_cone(extent_oracle, mean, 0, omega_max, samples_per_cone) samples = samples + samples_per_cone return vol, samples