# cone-vector.py --- A Python implementation of cone sampling # Copyright © 2021 Arun I <arunisaac@systemreboot.net> # Copyright © 2021 Murugesan Venkatapathi <murugesh@iisc.ac.in> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <https://www.gnu.org/licenses/>. from numpy import arcsin, cos, dot, empty, log, ones, sin, sqrt, pi, where from numpy.random import randn, random from numpy.linalg import norm from scipy.special import betainc, betaincinv def random_vector_on_sphere(dim): """Return a random vector uniformly distributed on the unit sphere.""" x = randn(dim) return x / norm(x) def planar_angle2solid_angle_fraction(planar_angle, dim): """Return the solid angle fraction for a given planar angle.""" alpha = (dim - 1) / 2 beta = 1/2 return where(planar_angle < pi/2, 0.5*betainc(alpha, beta, sin(planar_angle)**2), 1 - 0.5*betainc(alpha, beta, sin(planar_angle)**2)) def solid_angle_fraction2planar_angle(solid_angle_fraction, dim): """Return the planar angle for a given solid angle fraction.""" alpha = (dim - 1) / 2 beta = 1/2 return where(solid_angle_fraction < 1/2, arcsin(sqrt(betaincinv(alpha, beta, 2*solid_angle_fraction))), pi - arcsin(sqrt(betaincinv(alpha, beta, 2*(1-solid_angle_fraction))))) def rotate_from_nth_canonical(x, axis): """Rotate vector from around the nth canonical axis to the given axis. """ xn = x[-1] axisn = axis[-1] if axisn != 1: b = norm(axis[:-1]) a = (dot(x, axis) - xn*axisn) / b s = sqrt(1 - axisn**2) x = x + (xn*s + a*(axisn - 1))/b * axis x[-1] = x[-1] + xn*(axisn - 1) - a*s \ - axisn*(xn*s + a*(axisn - 1))/b return x def random_planar_angle_cdf(maximum_planar_angle, dim): """Return a random planar angle using inverse transform sampling.""" return solid_angle_fraction2planar_angle( planar_angle2solid_angle_fraction(maximum_planar_angle, dim)*random(), dim) def random_planar_angle_pdf(maximum_planar_angle, dim): """Return a random planar angle using rejection sampling.""" # We apply the log function just to prevent the floats from # underflowing. box_height = (dim-2)*log(sin(min(maximum_planar_angle, pi/2))) while True: theta = maximum_planar_angle*random() f = box_height + log(random()) if f < (dim-2)*log(sin(theta)): return theta def random_vector_on_disk(axis, planar_angle): """Return a random vector uniformly distributed on the periphery of a disk.""" dim = axis.size x = empty(dim) x[:-1] = sin(planar_angle) * random_vector_on_sphere(dim - 1) x[-1] = cos(planar_angle) return rotate_from_nth_canonical(x, axis) def random_vector_on_spherical_cap_cdf(axis, maximum_planar_angle): """Return a random vector uniformly distributed on a spherical cap. The random planar angle is generated using inverse transform sampling.""" return random_vector_on_disk(axis, random_planar_angle_cdf(maximum_planar_angle, axis.size)) def random_vector_on_spherical_cap_pdf(axis, maximum_planar_angle): """Return a random vector uniformly distributed on a spherical cap. The random planar angle is generated using rejection sampling. This function is more numerically stable than random_vector_on_spherical_cap_cdf for large dimensions and small angles. """ return random_vector_on_disk(axis, random_planar_angle_pdf(maximum_planar_angle, axis.size)) def sample_code(): """Run some sample code testing the defined functions.""" dim = 100 maximum_planar_angle = pi/3 axis = ones(dim) axis = axis/norm(axis) print(random_vector_on_spherical_cap_cdf(axis, maximum_planar_angle)) print(random_vector_on_spherical_cap_pdf(axis, maximum_planar_angle)) if __name__ == '__main__': sample_code()