1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
import argparse
import arvados
import arvados.collection
import time
import subprocess
import tempfile
import json
import logging
logging.basicConfig(format="[%(asctime)s] %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
logging.getLogger("googleapiclient.discovery").setLevel(logging.WARN)
def validate_upload(api, collection, validated_project):
col = arvados.collection.Collection(collection["uuid"])
# validate the collection here. Check metadata, etc.
valid = True
if "sequence.fasta" not in col:
valid = False
logging.warn("Upload '%s' missing sequence.fasta", collection["name"])
if "metadata.jsonld" not in col:
logging.warn("Upload '%s' missing metadata.jsonld", collection["name"])
valid = False
dup = api.collections().list(filters=[["owner_uuid", "=", validated_project],
["portable_data_hash", "=", col.portable_data_hash()]]).execute()
if dup["items"]:
# This exact collection has been uploaded before.
valid = False
logging.warn("Upload '%s' is duplicate" % collection["name"])
if valid:
logging.info("Added '%s' to validated sequences" % collection["name"])
# Move it to the "validated" project to be included in the next analysis
api.collections().update(uuid=collection["uuid"], body={"owner_uuid": validated_project}).execute()
else:
# It is invalid, delete it.
logging.warn("Deleting '%s'" % collection["name"])
api.collections().delete(uuid=collection["uuid"]).execute()
return valid
def start_analysis(api,
analysis_project,
workflow_uuid,
validated_project):
project = api.groups().create(body={
"group_class": "project",
"name": "Pangenome analysis",
"owner_uuid": analysis_project,
}, ensure_unique_name=True).execute()
validated = arvados.util.list_all(api.collections().list, filters=[["owner_uuid", "=", validated_project]])
with tempfile.NamedTemporaryFile() as tmp:
inputobj = {
"inputReads": []
}
for v in validated:
inputobj["inputReads"].append({
"class": "File",
"location": "keep:%s/sequence.fasta" % v["portable_data_hash"]
})
tmp.write(json.dumps(inputobj, indent=2).encode('utf-8'))
tmp.flush()
cmd = ["arvados-cwl-runner",
"--submit",
"--no-wait",
"--debug",
"--project-uuid=%s" % project["uuid"],
"arvwf:%s" % workflow_uuid,
tmp.name]
logging.info("Running %s" % ' '.join(cmd))
comp = subprocess.run(cmd, capture_output=True)
if comp.returncode != 0:
logging.error(comp.stderr.decode('utf-8'))
def main():
parser = argparse.ArgumentParser(description='Analyze collections uploaded to a project')
parser.add_argument('--uploader-project', type=str, default='lugli-j7d0g-n5clictpuvwk8aa', help='')
parser.add_argument('--analysis-project', type=str, default='lugli-j7d0g-y4k4uswcqi3ku56', help='')
parser.add_argument('--validated-project', type=str, default='lugli-j7d0g-5ct8p1i1wrgyjvp', help='')
parser.add_argument('--workflow-uuid', type=str, default='lugli-7fd4e-mqfu9y3ofnpnho1', help='')
args = parser.parse_args()
api = arvados.api()
logging.info("Starting up, monitoring %s for uploads" % (args.uploader_project))
while True:
new_collections = api.collections().list(filters=[['owner_uuid', '=', args.uploader_project]]).execute()
at_least_one_new_valid_seq = False
for c in new_collections["items"]:
at_least_one_new_valid_seq = validate_upload(api, c, args.validated_project) or at_least_one_new_valid_seq
if at_least_one_new_valid_seq:
start_analysis(api, args.analysis_project,
args.workflow_uuid,
args.validated_project)
time.sleep(10)
|