1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
import argparse
import arvados
import arvados.collection
import time
import subprocess
import tempfile
import json
import logging
import ruamel.yaml
from bh20sequploader.qc_metadata import qc_metadata
from bh20sequploader.qc_fasta import qc_fasta
import pkg_resources
from schema_salad.sourceline import add_lc_filename
logging.basicConfig(format="[%(asctime)s] %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
logging.getLogger("googleapiclient.discovery").setLevel(logging.WARN)
def validate_upload(api, collection, validated_project,
fastq_project, fastq_workflow_uuid):
col = arvados.collection.Collection(collection["uuid"])
if collection.get("status") in ("validated", "rejected"):
return False
# validate the collection here. Check metadata, etc.
logging.info("Validating upload '%s' (%s)" % (collection["name"], collection["uuid"]))
errors = []
dup = api.collections().list(filters=[["owner_uuid", "=", validated_project],
["portable_data_hash", "=", col.portable_data_hash()]]).execute()
if dup["items"]:
# This exact collection has been uploaded before.
errors.append("Duplicate of %s" % ([d["uuid"] for d in dup["items"]]))
if not errors:
if "metadata.yaml" not in col:
errors.append("Missing metadata.yaml", collection["name"])
else:
try:
metadata_content = ruamel.yaml.round_trip_load(col.open("metadata.yaml"))
metadata_content["id"] = "http://arvados.org/keep:%s/metadata.yaml" % collection["portable_data_hash"]
sample_id = metadata_content["sample"]["sample_id"]
add_lc_filename(metadata_content, metadata_content["id"])
valid = qc_metadata(metadata_content)
if not valid:
errors.append("Failed metadata qc")
except Exception as e:
errors.append(str(e))
if not errors:
try:
tgt = None
paired = {"reads_1.fastq": "reads.fastq", "reads_1.fastq.gz": "reads.fastq.gz"}
for n in ("sequence.fasta", "reads.fastq", "reads.fastq.gz", "reads_1.fastq", "reads_1.fastq.gz"):
if n not in col:
continue
with col.open(n, 'rb') as qf:
tgt = qc_fasta(qf)[0]
if tgt != n and tgt != paired.get(n):
errors.append("Expected %s but magic says it should be %s", n, tgt)
elif tgt in ("reads.fastq", "reads.fastq.gz", "reads_1.fastq", "reads_1.fastq.gz"):
start_fastq_to_fasta(api, collection, fastq_project, fastq_workflow_uuid, n, sample_id)
return False
if tgt is None:
errors.append("Upload '%s' does not contain sequence.fasta, reads.fastq or reads_1.fastq", collection["name"])
except Exception as v:
errors.append(str(v))
if not errors:
logging.info("Added '%s' to validated sequences" % collection["name"])
# Move it to the "validated" project to be included in the next analysis
collection["properties"]["status"] = "validated"
api.collections().update(uuid=collection["uuid"], body={
"owner_uuid": validated_project,
"name": "%s (%s)" % (collection["name"], time.asctime(time.gmtime()))}).execute()
return True
else:
# It is invalid
logging.warn("'%s' (%s) has validation errors: %s" % (
collection["name"], collection["uuid"], "\n".join(errors)))
collection["properties"]["status"] = "rejected"
collection["properties"]["errors"] = errors
api.collections().update(uuid=collection["uuid"], body={"properties": collection["properties"]}).execute()
return False
def run_workflow(api, parent_project, workflow_uuid, name, inputobj):
project = api.groups().create(body={
"group_class": "project",
"name": name,
"owner_uuid": parent_project,
}, ensure_unique_name=True).execute()
with tempfile.NamedTemporaryFile() as tmp:
tmp.write(json.dumps(inputobj, indent=2).encode('utf-8'))
tmp.flush()
cmd = ["arvados-cwl-runner",
"--submit",
"--no-wait",
"--project-uuid=%s" % project["uuid"],
"arvwf:%s" % workflow_uuid,
tmp.name]
logging.info("Running %s" % ' '.join(cmd))
comp = subprocess.run(cmd, capture_output=True)
logging.info("Submitted %s", comp.stdout)
if comp.returncode != 0:
logging.error(comp.stderr.decode('utf-8'))
return project
def start_fastq_to_fasta(api, collection,
analysis_project,
fastq_workflow_uuid,
tgt,
sample_id):
params = {
"metadata": {
"class": "File",
"location": "keep:%s/metadata.yaml" % collection["portable_data_hash"]
},
"ref_fasta": {
"class": "File",
"location": "keep:ffef6a3b77e5e04f8f62a7b6f67264d1+556/SARS-CoV2-NC_045512.2.fasta"
},
"sample_id": sample_id
}
if tgt.startswith("reads.fastq"):
params["fastq_forward"] = {
"class": "File",
"location": "keep:%s/%s" % (collection["portable_data_hash"], tgt)
}
elif tgt.startswith("reads_1.fastq"):
params["fastq_forward"] = {
"class": "File",
"location": "keep:%s/reads_1.%s" % (collection["portable_data_hash"], tgt[8:])
}
params["fastq_reverse"] = {
"class": "File",
"location": "keep:%s/reads_2.%s" % (collection["portable_data_hash"], tgt[8:])
}
newproject = run_workflow(api, analysis_project, fastq_workflow_uuid, "FASTQ to FASTA", params)
api.collections().update(uuid=collection["uuid"],
body={"owner_uuid": newproject["uuid"]}).execute()
def start_pangenome_analysis(api,
analysis_project,
pangenome_workflow_uuid,
validated_project,
schema_ref,
exclude_list):
validated = arvados.util.list_all(api.collections().list, filters=[["owner_uuid", "=", validated_project]])
inputobj = {
"inputReads": [],
"metadata": [],
"subjects": [],
"metadataSchema": {
"class": "File",
"location": schema_ref
},
"exclude": {
"class": "File",
"location": exclude_list
}
}
validated.sort(key=lambda v: v["portable_data_hash"])
for v in validated:
inputobj["inputReads"].append({
"class": "File",
"location": "keep:%s/sequence.fasta" % v["portable_data_hash"]
})
inputobj["metadata"].append({
"class": "File",
"location": "keep:%s/metadata.yaml" % v["portable_data_hash"]
})
inputobj["subjects"].append("http://collections.lugli.arvadosapi.com/c=%s/sequence.fasta" % v["portable_data_hash"])
run_workflow(api, analysis_project, pangenome_workflow_uuid, "Pangenome analysis", inputobj)
def get_workflow_output_from_project(api, uuid):
cr = api.container_requests().list(filters=[['owner_uuid', '=', uuid],
["requesting_container_uuid", "=", None]]).execute()
if cr["items"] and cr["items"][0]["output_uuid"]:
return cr["items"][0]
else:
return None
def copy_most_recent_result(api, analysis_project, latest_result_uuid):
most_recent_analysis = api.groups().list(filters=[['owner_uuid', '=', analysis_project]],
order="created_at desc", limit=1).execute()
for m in most_recent_analysis["items"]:
wf = get_workflow_output_from_project(api, m["uuid"])
if wf:
src = api.collections().get(uuid=wf["output_uuid"]).execute()
dst = api.collections().get(uuid=latest_result_uuid).execute()
if src["portable_data_hash"] != dst["portable_data_hash"]:
logging.info("Copying latest result from '%s' to %s", m["name"], latest_result_uuid)
api.collections().update(uuid=latest_result_uuid,
body={"manifest_text": src["manifest_text"],
"description": "Result from %s %s" % (m["name"], wf["uuid"])}).execute()
break
def move_fastq_to_fasta_results(api, analysis_project, uploader_project):
projects = api.groups().list(filters=[['owner_uuid', '=', analysis_project],
["properties.moved_output", "!=", True]],
order="created_at desc",).execute()
for p in projects["items"]:
wf = get_workflow_output_from_project(api, p["uuid"])
if wf:
logging.info("Moving completed fastq2fasta result %s back to uploader project", wf["output_uuid"])
api.collections().update(uuid=wf["output_uuid"],
body={"owner_uuid": uploader_project}).execute()
p["properties"]["moved_output"] = True
api.groups().update(uuid=p["uuid"], body={"properties": p["properties"]}).execute()
def upload_schema(api, workflow_def_project):
schema_resource = pkg_resources.resource_stream('bh20sequploader.qc_metadata', "bh20seq-schema.yml")
c = arvados.collection.Collection()
with c.open("schema.yml", "wb") as f:
f.write(schema_resource.read())
pdh = c.portable_data_hash()
wd = api.collections().list(filters=[["owner_uuid", "=", workflow_def_project],
["portable_data_hash", "=", pdh]]).execute()
if len(wd["items"]) == 0:
c.save_new(owner_uuid=workflow_def_project, name="Metadata schema", ensure_unique_name=True)
return "keep:%s/schema.yml" % pdh
def print_status(api, uploader_project):
pending = arvados.util.list_all(api.collections().list, filters=[["owner_uuid", "=", uploader_project]])
out = []
for p in pending:
prop = p["properties"]
out.append(prop)
if "status" not in prop:
prop["status"] = "pending"
prop["created_at"] = p["created_at"]
prop["uuid"] = p["uuid"]
print(json.dumps(out, indent=2))
def main():
parser = argparse.ArgumentParser(description='Analyze collections uploaded to a project')
parser.add_argument('--uploader-project', type=str, default='lugli-j7d0g-n5clictpuvwk8aa', help='')
parser.add_argument('--pangenome-analysis-project', type=str, default='lugli-j7d0g-y4k4uswcqi3ku56', help='')
parser.add_argument('--fastq-project', type=str, default='lugli-j7d0g-xcjxp4oox2u1w8u', help='')
parser.add_argument('--validated-project', type=str, default='lugli-j7d0g-5ct8p1i1wrgyjvp', help='')
parser.add_argument('--workflow-def-project', type=str, default='lugli-j7d0g-5hswinmpyho8dju', help='')
parser.add_argument('--pangenome-workflow-uuid', type=str, default='lugli-7fd4e-mqfu9y3ofnpnho1', help='')
parser.add_argument('--fastq-workflow-uuid', type=str, default='lugli-7fd4e-2zp9q4jo5xpif9y', help='')
parser.add_argument('--exclude-list', type=str, default='keep:lugli-4zz18-tzzhcm6hrf8ci8d/exclude.txt', help='')
parser.add_argument('--latest-result-collection', type=str, default='lugli-4zz18-z513nlpqm03hpca', help='')
parser.add_argument('--kickoff', action="store_true")
parser.add_argument('--no-start-analysis', action="store_true")
parser.add_argument('--once', action="store_true")
parser.add_argument('--print-status', action="store_true")
args = parser.parse_args()
api = arvados.api()
schema_ref = upload_schema(api, args.workflow_def_project)
if args.kickoff:
logging.info("Starting a single analysis run")
start_pangenome_analysis(api,
args.pangenome_analysis_project,
args.pangenome_workflow_uuid,
args.validated_project,
schema_ref,
args.exclude_list)
return
if args.print_status:
print_status(api, args.uploader_project)
exit(0)
logging.info("Starting up, monitoring %s for uploads" % (args.uploader_project))
while True:
move_fastq_to_fasta_results(api, args.fastq_project, args.uploader_project)
new_collections = arvados.util.list_all(api.collections().list, filters=[["owner_uuid", "=", args.uploader_project]])
at_least_one_new_valid_seq = False
for c in new_collections:
at_least_one_new_valid_seq = validate_upload(api, c,
args.validated_project,
args.fastq_project,
args.fastq_workflow_uuid) or at_least_one_new_valid_seq
if at_least_one_new_valid_seq and not args.no_start_analysis:
start_pangenome_analysis(api,
args.pangenome_analysis_project,
args.pangenome_workflow_uuid,
args.validated_project,
schema_ref,
args.exclude_list)
copy_most_recent_result(api,
args.pangenome_analysis_project,
args.latest_result_collection)
if args.once:
break
time.sleep(15)
|