1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
|
(define-module (skribilo coloring c-lex)
:use-module (skribilo lib)
:use-module (skribilo coloring parameters)
:export (lexer-init lexer
lexer-get-func-column
lexer-get-func-offset
lexer-get-line lexer-getc
lexer-ungetc))
; *** This file starts with a copy of the file multilex.scm ***
; SILex - Scheme Implementation of Lex
; Copyright (C) 2001 Danny Dube'
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; as published by the Free Software Foundation; either version 2
; of the License, or (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;
; Gestion des Input Systems
; Fonctions a utiliser par l'usager:
; lexer-make-IS, lexer-get-func-getc, lexer-get-func-ungetc,
; lexer-get-func-line, lexer-get-func-column et lexer-get-func-offset
;
; Taille initiale par defaut du buffer d'entree
(define lexer-init-buffer-len 1024)
; Numero du caractere newline
(define lexer-integer-newline (char->integer #\newline))
; Constructeur d'IS brut
(define lexer-raw-IS-maker
(lambda (buffer read-ptr input-f counters)
(let ((input-f input-f) ; Entree reelle
(buffer buffer) ; Buffer
(buflen (string-length buffer))
(read-ptr read-ptr)
(start-ptr 1) ; Marque de debut de lexeme
(start-line 1)
(start-column 1)
(start-offset 0)
(end-ptr 1) ; Marque de fin de lexeme
(point-ptr 1) ; Le point
(user-ptr 1) ; Marque de l'usager
(user-line 1)
(user-column 1)
(user-offset 0)
(user-up-to-date? #t)) ; Concerne la colonne seul.
(letrec
((start-go-to-end-none ; Fonctions de depl. des marques
(lambda ()
(set! start-ptr end-ptr)))
(start-go-to-end-line
(lambda ()
(let loop ((ptr start-ptr) (line start-line))
(if (= ptr end-ptr)
(begin
(set! start-ptr ptr)
(set! start-line line))
(if (char=? (string-ref buffer ptr) #\newline)
(loop (+ ptr 1) (+ line 1))
(loop (+ ptr 1) line))))))
(start-go-to-end-all
(lambda ()
(set! start-offset (+ start-offset (- end-ptr start-ptr)))
(let loop ((ptr start-ptr)
(line start-line)
(column start-column))
(if (= ptr end-ptr)
(begin
(set! start-ptr ptr)
(set! start-line line)
(set! start-column column))
(if (char=? (string-ref buffer ptr) #\newline)
(loop (+ ptr 1) (+ line 1) 1)
(loop (+ ptr 1) line (+ column 1)))))))
(start-go-to-user-none
(lambda ()
(set! start-ptr user-ptr)))
(start-go-to-user-line
(lambda ()
(set! start-ptr user-ptr)
(set! start-line user-line)))
(start-go-to-user-all
(lambda ()
(set! start-line user-line)
(set! start-offset user-offset)
(if user-up-to-date?
(begin
(set! start-ptr user-ptr)
(set! start-column user-column))
(let loop ((ptr start-ptr) (column start-column))
(if (= ptr user-ptr)
(begin
(set! start-ptr ptr)
(set! start-column column))
(if (char=? (string-ref buffer ptr) #\newline)
(loop (+ ptr 1) 1)
(loop (+ ptr 1) (+ column 1))))))))
(end-go-to-point
(lambda ()
(set! end-ptr point-ptr)))
(point-go-to-start
(lambda ()
(set! point-ptr start-ptr)))
(user-go-to-start-none
(lambda ()
(set! user-ptr start-ptr)))
(user-go-to-start-line
(lambda ()
(set! user-ptr start-ptr)
(set! user-line start-line)))
(user-go-to-start-all
(lambda ()
(set! user-ptr start-ptr)
(set! user-line start-line)
(set! user-column start-column)
(set! user-offset start-offset)
(set! user-up-to-date? #t)))
(init-lexeme-none ; Debute un nouveau lexeme
(lambda ()
(if (< start-ptr user-ptr)
(start-go-to-user-none))
(point-go-to-start)))
(init-lexeme-line
(lambda ()
(if (< start-ptr user-ptr)
(start-go-to-user-line))
(point-go-to-start)))
(init-lexeme-all
(lambda ()
(if (< start-ptr user-ptr)
(start-go-to-user-all))
(point-go-to-start)))
(get-start-line ; Obtention des stats du debut du lxm
(lambda ()
start-line))
(get-start-column
(lambda ()
start-column))
(get-start-offset
(lambda ()
start-offset))
(peek-left-context ; Obtention de caracteres (#f si EOF)
(lambda ()
(char->integer (string-ref buffer (- start-ptr 1)))))
(peek-char
(lambda ()
(if (< point-ptr read-ptr)
(char->integer (string-ref buffer point-ptr))
(let ((c (input-f)))
(if (char? c)
(begin
(if (= read-ptr buflen)
(reorganize-buffer))
(string-set! buffer point-ptr c)
(set! read-ptr (+ point-ptr 1))
(char->integer c))
(begin
(set! input-f (lambda () 'eof))
#f))))))
(read-char
(lambda ()
(if (< point-ptr read-ptr)
(let ((c (string-ref buffer point-ptr)))
(set! point-ptr (+ point-ptr 1))
(char->integer c))
(let ((c (input-f)))
(if (char? c)
(begin
(if (= read-ptr buflen)
(reorganize-buffer))
(string-set! buffer point-ptr c)
(set! read-ptr (+ point-ptr 1))
(set! point-ptr read-ptr)
(char->integer c))
(begin
(set! input-f (lambda () 'eof))
#f))))))
(get-start-end-text ; Obtention du lexeme
(lambda ()
(substring buffer start-ptr end-ptr)))
(get-user-line-line ; Fonctions pour l'usager
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-line))
user-line))
(get-user-line-all
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-all))
user-line))
(get-user-column-all
(lambda ()
(cond ((< user-ptr start-ptr)
(user-go-to-start-all)
user-column)
(user-up-to-date?
user-column)
(else
(let loop ((ptr start-ptr) (column start-column))
(if (= ptr user-ptr)
(begin
(set! user-column column)
(set! user-up-to-date? #t)
column)
(if (char=? (string-ref buffer ptr) #\newline)
(loop (+ ptr 1) 1)
(loop (+ ptr 1) (+ column 1)))))))))
(get-user-offset-all
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-all))
user-offset))
(user-getc-none
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-none))
(if (< user-ptr read-ptr)
(let ((c (string-ref buffer user-ptr)))
(set! user-ptr (+ user-ptr 1))
c)
(let ((c (input-f)))
(if (char? c)
(begin
(if (= read-ptr buflen)
(reorganize-buffer))
(string-set! buffer user-ptr c)
(set! read-ptr (+ read-ptr 1))
(set! user-ptr read-ptr)
c)
(begin
(set! input-f (lambda () 'eof))
'eof))))))
(user-getc-line
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-line))
(if (< user-ptr read-ptr)
(let ((c (string-ref buffer user-ptr)))
(set! user-ptr (+ user-ptr 1))
(if (char=? c #\newline)
(set! user-line (+ user-line 1)))
c)
(let ((c (input-f)))
(if (char? c)
(begin
(if (= read-ptr buflen)
(reorganize-buffer))
(string-set! buffer user-ptr c)
(set! read-ptr (+ read-ptr 1))
(set! user-ptr read-ptr)
(if (char=? c #\newline)
(set! user-line (+ user-line 1)))
c)
(begin
(set! input-f (lambda () 'eof))
'eof))))))
(user-getc-all
(lambda ()
(if (< user-ptr start-ptr)
(user-go-to-start-all))
(if (< user-ptr read-ptr)
(let ((c (string-ref buffer user-ptr)))
(set! user-ptr (+ user-ptr 1))
(if (char=? c #\newline)
(begin
(set! user-line (+ user-line 1))
(set! user-column 1))
(set! user-column (+ user-column 1)))
(set! user-offset (+ user-offset 1))
c)
(let ((c (input-f)))
(if (char? c)
(begin
(if (= read-ptr buflen)
(reorganize-buffer))
(string-set! buffer user-ptr c)
(set! read-ptr (+ read-ptr 1))
(set! user-ptr read-ptr)
(if (char=? c #\newline)
(begin
(set! user-line (+ user-line 1))
(set! user-column 1))
(set! user-column (+ user-column 1)))
(set! user-offset (+ user-offset 1))
c)
(begin
(set! input-f (lambda () 'eof))
'eof))))))
(user-ungetc-none
(lambda ()
(if (> user-ptr start-ptr)
(set! user-ptr (- user-ptr 1)))))
(user-ungetc-line
(lambda ()
(if (> user-ptr start-ptr)
(begin
(set! user-ptr (- user-ptr 1))
(let ((c (string-ref buffer user-ptr)))
(if (char=? c #\newline)
(set! user-line (- user-line 1))))))))
(user-ungetc-all
(lambda ()
(if (> user-ptr start-ptr)
(begin
(set! user-ptr (- user-ptr 1))
(let ((c (string-ref buffer user-ptr)))
(if (char=? c #\newline)
(begin
(set! user-line (- user-line 1))
(set! user-up-to-date? #f))
(set! user-column (- user-column 1)))
(set! user-offset (- user-offset 1)))))))
(reorganize-buffer ; Decaler ou agrandir le buffer
(lambda ()
(if (< (* 2 start-ptr) buflen)
(let* ((newlen (* 2 buflen))
(newbuf (make-string newlen))
(delta (- start-ptr 1)))
(let loop ((from (- start-ptr 1)))
(if (< from buflen)
(begin
(string-set! newbuf
(- from delta)
(string-ref buffer from))
(loop (+ from 1)))))
(set! buffer newbuf)
(set! buflen newlen)
(set! read-ptr (- read-ptr delta))
(set! start-ptr (- start-ptr delta))
(set! end-ptr (- end-ptr delta))
(set! point-ptr (- point-ptr delta))
(set! user-ptr (- user-ptr delta)))
(let ((delta (- start-ptr 1)))
(let loop ((from (- start-ptr 1)))
(if (< from buflen)
(begin
(string-set! buffer
(- from delta)
(string-ref buffer from))
(loop (+ from 1)))))
(set! read-ptr (- read-ptr delta))
(set! start-ptr (- start-ptr delta))
(set! end-ptr (- end-ptr delta))
(set! point-ptr (- point-ptr delta))
(set! user-ptr (- user-ptr delta)))))))
(list (cons 'start-go-to-end
(cond ((eq? counters 'none) start-go-to-end-none)
((eq? counters 'line) start-go-to-end-line)
((eq? counters 'all ) start-go-to-end-all)))
(cons 'end-go-to-point
end-go-to-point)
(cons 'init-lexeme
(cond ((eq? counters 'none) init-lexeme-none)
((eq? counters 'line) init-lexeme-line)
((eq? counters 'all ) init-lexeme-all)))
(cons 'get-start-line
get-start-line)
(cons 'get-start-column
get-start-column)
(cons 'get-start-offset
get-start-offset)
(cons 'peek-left-context
peek-left-context)
(cons 'peek-char
peek-char)
(cons 'read-char
read-char)
(cons 'get-start-end-text
get-start-end-text)
(cons 'get-user-line
(cond ((eq? counters 'none) #f)
((eq? counters 'line) get-user-line-line)
((eq? counters 'all ) get-user-line-all)))
(cons 'get-user-column
(cond ((eq? counters 'none) #f)
((eq? counters 'line) #f)
((eq? counters 'all ) get-user-column-all)))
(cons 'get-user-offset
(cond ((eq? counters 'none) #f)
((eq? counters 'line) #f)
((eq? counters 'all ) get-user-offset-all)))
(cons 'user-getc
(cond ((eq? counters 'none) user-getc-none)
((eq? counters 'line) user-getc-line)
((eq? counters 'all ) user-getc-all)))
(cons 'user-ungetc
(cond ((eq? counters 'none) user-ungetc-none)
((eq? counters 'line) user-ungetc-line)
((eq? counters 'all ) user-ungetc-all))))))))
; Construit un Input System
; Le premier parametre doit etre parmi "port", "procedure" ou "string"
; Prend un parametre facultatif qui doit etre parmi
; "none", "line" ou "all"
(define lexer-make-IS
(lambda (input-type input . largs)
(let ((counters-type (cond ((null? largs)
'line)
((memq (car largs) '(none line all))
(car largs))
(else
'line))))
(cond ((and (eq? input-type 'port) (input-port? input))
(let* ((buffer (make-string lexer-init-buffer-len #\newline))
(read-ptr 1)
(input-f (lambda () (read-char input))))
(lexer-raw-IS-maker buffer read-ptr input-f counters-type)))
((and (eq? input-type 'procedure) (procedure? input))
(let* ((buffer (make-string lexer-init-buffer-len #\newline))
(read-ptr 1)
(input-f input))
(lexer-raw-IS-maker buffer read-ptr input-f counters-type)))
((and (eq? input-type 'string) (string? input))
(let* ((buffer (string-append (string #\newline) input))
(read-ptr (string-length buffer))
(input-f (lambda () 'eof)))
(lexer-raw-IS-maker buffer read-ptr input-f counters-type)))
(else
(let* ((buffer (string #\newline))
(read-ptr 1)
(input-f (lambda () 'eof)))
(lexer-raw-IS-maker buffer read-ptr input-f counters-type)))))))
; Les fonctions:
; lexer-get-func-getc, lexer-get-func-ungetc,
; lexer-get-func-line, lexer-get-func-column et lexer-get-func-offset
(define lexer-get-func-getc
(lambda (IS) (cdr (assq 'user-getc IS))))
(define lexer-get-func-ungetc
(lambda (IS) (cdr (assq 'user-ungetc IS))))
(define lexer-get-func-line
(lambda (IS) (cdr (assq 'get-user-line IS))))
(define lexer-get-func-column
(lambda (IS) (cdr (assq 'get-user-column IS))))
(define lexer-get-func-offset
(lambda (IS) (cdr (assq 'get-user-offset IS))))
;
; Gestion des lexers
;
; Fabrication de lexer a partir d'arbres de decision
(define lexer-make-tree-lexer
(lambda (tables IS)
(letrec
(; Contenu de la table
(counters-type (vector-ref tables 0))
(<<EOF>>-pre-action (vector-ref tables 1))
(<<ERROR>>-pre-action (vector-ref tables 2))
(rules-pre-actions (vector-ref tables 3))
(table-nl-start (vector-ref tables 5))
(table-no-nl-start (vector-ref tables 6))
(trees-v (vector-ref tables 7))
(acc-v (vector-ref tables 8))
; Contenu du IS
(IS-start-go-to-end (cdr (assq 'start-go-to-end IS)))
(IS-end-go-to-point (cdr (assq 'end-go-to-point IS)))
(IS-init-lexeme (cdr (assq 'init-lexeme IS)))
(IS-get-start-line (cdr (assq 'get-start-line IS)))
(IS-get-start-column (cdr (assq 'get-start-column IS)))
(IS-get-start-offset (cdr (assq 'get-start-offset IS)))
(IS-peek-left-context (cdr (assq 'peek-left-context IS)))
(IS-peek-char (cdr (assq 'peek-char IS)))
(IS-read-char (cdr (assq 'read-char IS)))
(IS-get-start-end-text (cdr (assq 'get-start-end-text IS)))
(IS-get-user-line (cdr (assq 'get-user-line IS)))
(IS-get-user-column (cdr (assq 'get-user-column IS)))
(IS-get-user-offset (cdr (assq 'get-user-offset IS)))
(IS-user-getc (cdr (assq 'user-getc IS)))
(IS-user-ungetc (cdr (assq 'user-ungetc IS)))
; Resultats
(<<EOF>>-action #f)
(<<ERROR>>-action #f)
(rules-actions #f)
(states #f)
(final-lexer #f)
; Gestion des hooks
(hook-list '())
(add-hook
(lambda (thunk)
(set! hook-list (cons thunk hook-list))))
(apply-hooks
(lambda ()
(let loop ((l hook-list))
(if (pair? l)
(begin
((car l))
(loop (cdr l)))))))
; Preparation des actions
(set-action-statics
(lambda (pre-action)
(pre-action final-lexer IS-user-getc IS-user-ungetc)))
(prepare-special-action-none
(lambda (pre-action)
(let ((action #f))
(let ((result
(lambda ()
(action "")))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-special-action-line
(lambda (pre-action)
(let ((action #f))
(let ((result
(lambda (yyline)
(action "" yyline)))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-special-action-all
(lambda (pre-action)
(let ((action #f))
(let ((result
(lambda (yyline yycolumn yyoffset)
(action "" yyline yycolumn yyoffset)))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-special-action
(lambda (pre-action)
(cond ((eq? counters-type 'none)
(prepare-special-action-none pre-action))
((eq? counters-type 'line)
(prepare-special-action-line pre-action))
((eq? counters-type 'all)
(prepare-special-action-all pre-action)))))
(prepare-action-yytext-none
(lambda (pre-action)
(let ((get-start-end-text IS-get-start-end-text)
(start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda ()
(let ((yytext (get-start-end-text)))
(start-go-to-end)
(action yytext))))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-yytext-line
(lambda (pre-action)
(let ((get-start-end-text IS-get-start-end-text)
(start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda (yyline)
(let ((yytext (get-start-end-text)))
(start-go-to-end)
(action yytext yyline))))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-yytext-all
(lambda (pre-action)
(let ((get-start-end-text IS-get-start-end-text)
(start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda (yyline yycolumn yyoffset)
(let ((yytext (get-start-end-text)))
(start-go-to-end)
(action yytext yyline yycolumn yyoffset))))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-yytext
(lambda (pre-action)
(cond ((eq? counters-type 'none)
(prepare-action-yytext-none pre-action))
((eq? counters-type 'line)
(prepare-action-yytext-line pre-action))
((eq? counters-type 'all)
(prepare-action-yytext-all pre-action)))))
(prepare-action-no-yytext-none
(lambda (pre-action)
(let ((start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda ()
(start-go-to-end)
(action)))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-no-yytext-line
(lambda (pre-action)
(let ((start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda (yyline)
(start-go-to-end)
(action yyline)))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-no-yytext-all
(lambda (pre-action)
(let ((start-go-to-end IS-start-go-to-end)
(action #f))
(let ((result
(lambda (yyline yycolumn yyoffset)
(start-go-to-end)
(action yyline yycolumn yyoffset)))
(hook
(lambda ()
(set! action (set-action-statics pre-action)))))
(add-hook hook)
result))))
(prepare-action-no-yytext
(lambda (pre-action)
(cond ((eq? counters-type 'none)
(prepare-action-no-yytext-none pre-action))
((eq? counters-type 'line)
(prepare-action-no-yytext-line pre-action))
((eq? counters-type 'all)
(prepare-action-no-yytext-all pre-action)))))
; Fabrique les fonctions de dispatch
(prepare-dispatch-err
(lambda (leaf)
(lambda (c)
#f)))
(prepare-dispatch-number
(lambda (leaf)
(let ((state-function #f))
(let ((result
(lambda (c)
state-function))
(hook
(lambda ()
(set! state-function (vector-ref states leaf)))))
(add-hook hook)
result))))
(prepare-dispatch-leaf
(lambda (leaf)
(if (eq? leaf 'err)
(prepare-dispatch-err leaf)
(prepare-dispatch-number leaf))))
(prepare-dispatch-<
(lambda (tree)
(let ((left-tree (list-ref tree 1))
(right-tree (list-ref tree 2)))
(let ((bound (list-ref tree 0))
(left-func (prepare-dispatch-tree left-tree))
(right-func (prepare-dispatch-tree right-tree)))
(lambda (c)
(if (< c bound)
(left-func c)
(right-func c)))))))
(prepare-dispatch-=
(lambda (tree)
(let ((left-tree (list-ref tree 2))
(right-tree (list-ref tree 3)))
(let ((bound (list-ref tree 1))
(left-func (prepare-dispatch-tree left-tree))
(right-func (prepare-dispatch-tree right-tree)))
(lambda (c)
(if (= c bound)
(left-func c)
(right-func c)))))))
(prepare-dispatch-tree
(lambda (tree)
(cond ((not (pair? tree))
(prepare-dispatch-leaf tree))
((eq? (car tree) '=)
(prepare-dispatch-= tree))
(else
(prepare-dispatch-< tree)))))
(prepare-dispatch
(lambda (tree)
(let ((dicho-func (prepare-dispatch-tree tree)))
(lambda (c)
(and c (dicho-func c))))))
; Fabrique les fonctions de transition (read & go) et (abort)
(prepare-read-n-go
(lambda (tree)
(let ((dispatch-func (prepare-dispatch tree))
(read-char IS-read-char))
(lambda ()
(dispatch-func (read-char))))))
(prepare-abort
(lambda (tree)
(lambda ()
#f)))
(prepare-transition
(lambda (tree)
(if (eq? tree 'err)
(prepare-abort tree)
(prepare-read-n-go tree))))
; Fabrique les fonctions d'etats ([set-end] & trans)
(prepare-state-no-acc
(lambda (s r1 r2)
(let ((trans-func (prepare-transition (vector-ref trees-v s))))
(lambda (action)
(let ((next-state (trans-func)))
(if next-state
(next-state action)
action))))))
(prepare-state-yes-no
(lambda (s r1 r2)
(let ((peek-char IS-peek-char)
(end-go-to-point IS-end-go-to-point)
(new-action1 #f)
(trans-func (prepare-transition (vector-ref trees-v s))))
(let ((result
(lambda (action)
(let* ((c (peek-char))
(new-action
(if (or (not c) (= c lexer-integer-newline))
(begin
(end-go-to-point)
new-action1)
action))
(next-state (trans-func)))
(if next-state
(next-state new-action)
new-action))))
(hook
(lambda ()
(set! new-action1 (vector-ref rules-actions r1)))))
(add-hook hook)
result))))
(prepare-state-diff-acc
(lambda (s r1 r2)
(let ((end-go-to-point IS-end-go-to-point)
(peek-char IS-peek-char)
(new-action1 #f)
(new-action2 #f)
(trans-func (prepare-transition (vector-ref trees-v s))))
(let ((result
(lambda (action)
(end-go-to-point)
(let* ((c (peek-char))
(new-action
(if (or (not c) (= c lexer-integer-newline))
new-action1
new-action2))
(next-state (trans-func)))
(if next-state
(next-state new-action)
new-action))))
(hook
(lambda ()
(set! new-action1 (vector-ref rules-actions r1))
(set! new-action2 (vector-ref rules-actions r2)))))
(add-hook hook)
result))))
(prepare-state-same-acc
(lambda (s r1 r2)
(let ((end-go-to-point IS-end-go-to-point)
(trans-func (prepare-transition (vector-ref trees-v s)))
(new-action #f))
(let ((result
(lambda (action)
(end-go-to-point)
(let ((next-state (trans-func)))
(if next-state
(next-state new-action)
new-action))))
(hook
(lambda ()
(set! new-action (vector-ref rules-actions r1)))))
(add-hook hook)
result))))
(prepare-state
(lambda (s)
(let* ((acc (vector-ref acc-v s))
(r1 (car acc))
(r2 (cdr acc)))
(cond ((not r1) (prepare-state-no-acc s r1 r2))
((not r2) (prepare-state-yes-no s r1 r2))
((< r1 r2) (prepare-state-diff-acc s r1 r2))
(else (prepare-state-same-acc s r1 r2))))))
; Fabrique la fonction de lancement du lexage a l'etat de depart
(prepare-start-same
(lambda (s1 s2)
(let ((peek-char IS-peek-char)
(eof-action #f)
(start-state #f)
(error-action #f))
(let ((result
(lambda ()
(if (not (peek-char))
eof-action
(start-state error-action))))
(hook
(lambda ()
(set! eof-action <<EOF>>-action)
(set! start-state (vector-ref states s1))
(set! error-action <<ERROR>>-action))))
(add-hook hook)
result))))
(prepare-start-diff
(lambda (s1 s2)
(let ((peek-char IS-peek-char)
(eof-action #f)
(peek-left-context IS-peek-left-context)
(start-state1 #f)
(start-state2 #f)
(error-action #f))
(let ((result
(lambda ()
(cond ((not (peek-char))
eof-action)
((= (peek-left-context) lexer-integer-newline)
(start-state1 error-action))
(else
(start-state2 error-action)))))
(hook
(lambda ()
(set! eof-action <<EOF>>-action)
(set! start-state1 (vector-ref states s1))
(set! start-state2 (vector-ref states s2))
(set! error-action <<ERROR>>-action))))
(add-hook hook)
result))))
(prepare-start
(lambda ()
(let ((s1 table-nl-start)
(s2 table-no-nl-start))
(if (= s1 s2)
(prepare-start-same s1 s2)
(prepare-start-diff s1 s2)))))
; Fabrique la fonction principale
(prepare-lexer-none
(lambda ()
(let ((init-lexeme IS-init-lexeme)
(start-func (prepare-start)))
(lambda ()
(init-lexeme)
((start-func))))))
(prepare-lexer-line
(lambda ()
(let ((init-lexeme IS-init-lexeme)
(get-start-line IS-get-start-line)
(start-func (prepare-start)))
(lambda ()
(init-lexeme)
(let ((yyline (get-start-line)))
((start-func) yyline))))))
(prepare-lexer-all
(lambda ()
(let ((init-lexeme IS-init-lexeme)
(get-start-line IS-get-start-line)
(get-start-column IS-get-start-column)
(get-start-offset IS-get-start-offset)
(start-func (prepare-start)))
(lambda ()
(init-lexeme)
(let ((yyline (get-start-line))
(yycolumn (get-start-column))
(yyoffset (get-start-offset)))
((start-func) yyline yycolumn yyoffset))))))
(prepare-lexer
(lambda ()
(cond ((eq? counters-type 'none) (prepare-lexer-none))
((eq? counters-type 'line) (prepare-lexer-line))
((eq? counters-type 'all) (prepare-lexer-all))))))
; Calculer la valeur de <<EOF>>-action et de <<ERROR>>-action
(set! <<EOF>>-action (prepare-special-action <<EOF>>-pre-action))
(set! <<ERROR>>-action (prepare-special-action <<ERROR>>-pre-action))
; Calculer la valeur de rules-actions
(let* ((len (quotient (vector-length rules-pre-actions) 2))
(v (make-vector len)))
(let loop ((r (- len 1)))
(if (< r 0)
(set! rules-actions v)
(let* ((yytext? (vector-ref rules-pre-actions (* 2 r)))
(pre-action (vector-ref rules-pre-actions (+ (* 2 r) 1)))
(action (if yytext?
(prepare-action-yytext pre-action)
(prepare-action-no-yytext pre-action))))
(vector-set! v r action)
(loop (- r 1))))))
; Calculer la valeur de states
(let* ((len (vector-length trees-v))
(v (make-vector len)))
(let loop ((s (- len 1)))
(if (< s 0)
(set! states v)
(begin
(vector-set! v s (prepare-state s))
(loop (- s 1))))))
; Calculer la valeur de final-lexer
(set! final-lexer (prepare-lexer))
; Executer les hooks
(apply-hooks)
; Resultat
final-lexer)))
; Fabrication de lexer a partir de listes de caracteres taggees
(define lexer-make-char-lexer
(let* ((char->class
(lambda (c)
(let ((n (char->integer c)))
(list (cons n n)))))
(merge-sort
(lambda (l combine zero-elt)
(if (null? l)
zero-elt
(let loop1 ((l l))
(if (null? (cdr l))
(car l)
(loop1
(let loop2 ((l l))
(cond ((null? l)
l)
((null? (cdr l))
l)
(else
(cons (combine (car l) (cadr l))
(loop2 (cddr l))))))))))))
(finite-class-union
(lambda (c1 c2)
(let loop ((c1 c1) (c2 c2) (u '()))
(if (null? c1)
(if (null? c2)
(reverse u)
(loop c1 (cdr c2) (cons (car c2) u)))
(if (null? c2)
(loop (cdr c1) c2 (cons (car c1) u))
(let* ((r1 (car c1))
(r2 (car c2))
(r1start (car r1))
(r1end (cdr r1))
(r2start (car r2))
(r2end (cdr r2)))
(if (<= r1start r2start)
(cond ((< (+ r1end 1) r2start)
(loop (cdr c1) c2 (cons r1 u)))
((<= r1end r2end)
(loop (cdr c1)
(cons (cons r1start r2end) (cdr c2))
u))
(else
(loop c1 (cdr c2) u)))
(cond ((> r1start (+ r2end 1))
(loop c1 (cdr c2) (cons r2 u)))
((>= r1end r2end)
(loop (cons (cons r2start r1end) (cdr c1))
(cdr c2)
u))
(else
(loop (cdr c1) c2 u))))))))))
(char-list->class
(lambda (cl)
(let ((classes (map char->class cl)))
(merge-sort classes finite-class-union '()))))
(class-<
(lambda (b1 b2)
(cond ((eq? b1 'inf+) #f)
((eq? b2 'inf-) #f)
((eq? b1 'inf-) #t)
((eq? b2 'inf+) #t)
(else (< b1 b2)))))
(finite-class-compl
(lambda (c)
(let loop ((c c) (start 'inf-))
(if (null? c)
(list (cons start 'inf+))
(let* ((r (car c))
(rstart (car r))
(rend (cdr r)))
(if (class-< start rstart)
(cons (cons start (- rstart 1))
(loop c rstart))
(loop (cdr c) (+ rend 1))))))))
(tagged-chars->class
(lambda (tcl)
(let* ((inverse? (car tcl))
(cl (cdr tcl))
(class-tmp (char-list->class cl)))
(if inverse? (finite-class-compl class-tmp) class-tmp))))
(charc->arc
(lambda (charc)
(let* ((tcl (car charc))
(dest (cdr charc))
(class (tagged-chars->class tcl)))
(cons class dest))))
(arc->sharcs
(lambda (arc)
(let* ((range-l (car arc))
(dest (cdr arc))
(op (lambda (range) (cons range dest))))
(map op range-l))))
(class-<=
(lambda (b1 b2)
(cond ((eq? b1 'inf-) #t)
((eq? b2 'inf+) #t)
((eq? b1 'inf+) #f)
((eq? b2 'inf-) #f)
(else (<= b1 b2)))))
(sharc-<=
(lambda (sharc1 sharc2)
(class-<= (caar sharc1) (caar sharc2))))
(merge-sharcs
(lambda (l1 l2)
(let loop ((l1 l1) (l2 l2))
(cond ((null? l1)
l2)
((null? l2)
l1)
(else
(let ((sharc1 (car l1))
(sharc2 (car l2)))
(if (sharc-<= sharc1 sharc2)
(cons sharc1 (loop (cdr l1) l2))
(cons sharc2 (loop l1 (cdr l2))))))))))
(class-= eqv?)
(fill-error
(lambda (sharcs)
(let loop ((sharcs sharcs) (start 'inf-))
(cond ((class-= start 'inf+)
'())
((null? sharcs)
(cons (cons (cons start 'inf+) 'err)
(loop sharcs 'inf+)))
(else
(let* ((sharc (car sharcs))
(h (caar sharc))
(t (cdar sharc)))
(if (class-< start h)
(cons (cons (cons start (- h 1)) 'err)
(loop sharcs h))
(cons sharc (loop (cdr sharcs)
(if (class-= t 'inf+)
'inf+
(+ t 1)))))))))))
(charcs->tree
(lambda (charcs)
(let* ((op (lambda (charc) (arc->sharcs (charc->arc charc))))
(sharcs-l (map op charcs))
(sorted-sharcs (merge-sort sharcs-l merge-sharcs '()))
(full-sharcs (fill-error sorted-sharcs))
(op (lambda (sharc) (cons (caar sharc) (cdr sharc))))
(table (list->vector (map op full-sharcs))))
(let loop ((left 0) (right (- (vector-length table) 1)))
(if (= left right)
(cdr (vector-ref table left))
(let ((mid (quotient (+ left right 1) 2)))
(if (and (= (+ left 2) right)
(= (+ (car (vector-ref table mid)) 1)
(car (vector-ref table right)))
(eqv? (cdr (vector-ref table left))
(cdr (vector-ref table right))))
(list '=
(car (vector-ref table mid))
(cdr (vector-ref table mid))
(cdr (vector-ref table left)))
(list (car (vector-ref table mid))
(loop left (- mid 1))
(loop mid right))))))))))
(lambda (tables IS)
(let ((counters (vector-ref tables 0))
(<<EOF>>-action (vector-ref tables 1))
(<<ERROR>>-action (vector-ref tables 2))
(rules-actions (vector-ref tables 3))
(nl-start (vector-ref tables 5))
(no-nl-start (vector-ref tables 6))
(charcs-v (vector-ref tables 7))
(acc-v (vector-ref tables 8)))
(let* ((len (vector-length charcs-v))
(v (make-vector len)))
(let loop ((i (- len 1)))
(if (>= i 0)
(begin
(vector-set! v i (charcs->tree (vector-ref charcs-v i)))
(loop (- i 1)))
(lexer-make-tree-lexer
(vector counters
<<EOF>>-action
<<ERROR>>-action
rules-actions
'decision-trees
nl-start
no-nl-start
v
acc-v)
IS))))))))
; Fabrication d'un lexer a partir de code pre-genere
(define lexer-make-code-lexer
(lambda (tables IS)
(let ((<<EOF>>-pre-action (vector-ref tables 1))
(<<ERROR>>-pre-action (vector-ref tables 2))
(rules-pre-action (vector-ref tables 3))
(code (vector-ref tables 5)))
(code <<EOF>>-pre-action <<ERROR>>-pre-action rules-pre-action IS))))
(define lexer-make-lexer
(lambda (tables IS)
(let ((automaton-type (vector-ref tables 4)))
(cond ((eq? automaton-type 'decision-trees)
(lexer-make-tree-lexer tables IS))
((eq? automaton-type 'tagged-chars-lists)
(lexer-make-char-lexer tables IS))
((eq? automaton-type 'code)
(lexer-make-code-lexer tables IS))))))
;
; Table generated from the file c-lex.l by SILex 1.0
;
(define lexer-default-table
(vector
'line
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
'eof
))
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(skribe-error 'lisp-fontifier "Parse error" yytext)
))
(vector
#t
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(new markup
(markup '&source-string)
(body yytext))
;;Comments
))
#t
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(new markup
(markup '&source-line-comment)
(body yytext))
))
#t
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(new markup
(markup '&source-line-comment)
(body yytext))
;; Identifiers (only letters since we are interested in keywords only)
))
#t
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(let* ((ident (string->symbol yytext))
(tmp (memq ident *the-keys*)))
(if tmp
(new markup
(markup '&source-module)
(body yytext))
yytext))
;; Regular text
))
#t
(lambda (yycontinue yygetc yyungetc)
(lambda (yytext yyline)
(begin yytext)
)))
'decision-trees
0
0
'#((65 (35 (34 1 5) (= 47 4 1)) (96 (91 3 (95 1 2)) (97 1 (123 3 1))))
(65 (= 34 err 1) (97 (91 err 1) (123 err 1))) (91 (35 (34 1 err) (65 1
3)) (96 (95 1 2) (97 1 (123 3 1)))) (95 (65 err (91 3 err)) (97 (96 3
err) (123 3 err))) (47 (35 (34 1 err) (= 42 7 1)) (91 (48 6 (65 1 err))
(97 1 (123 err 1)))) (= 34 8 5) (35 (11 (10 6 1) (34 6 9)) (91 (65 6 9)
(97 6 (123 9 6)))) (42 (11 (10 7 1) (= 34 10 7)) (91 (43 11 (65 7 10))
(97 7 (123 10 7)))) err (= 10 err 9) (11 (10 10 err) (= 42 12 10)) (43
(34 (= 10 1 7) (35 10 (42 7 11))) (65 (= 47 13 7) (97 (91 10 7) (123 10
7)))) (42 (= 10 err 10) (47 (43 12 10) (48 14 10))) (42 (11 (10 7 1) (=
34 10 7)) (91 (43 11 (65 7 10)) (97 7 (123 10 7)))) (11 (10 10 err) (=
42 12 10)))
'#((#f . #f) (4 . 4) (3 . 3) (3 . 3) (4 . 4) (#f . #f) (2 . 2) (4 . 4)
(0 . 0) (2 . 2) (#f . #f) (4 . 4) (#f . #f) (1 . 1) (1 . 1))))
;
; User functions
;
(define lexer #f)
(define lexer-get-line #f)
(define lexer-getc #f)
(define lexer-ungetc #f)
(define lexer-init
(lambda (input-type input)
(let ((IS (lexer-make-IS input-type input 'line)))
(set! lexer (lexer-make-lexer lexer-default-table IS))
(set! lexer-get-line (lexer-get-func-line IS))
(set! lexer-getc (lexer-get-func-getc IS))
(set! lexer-ungetc (lexer-get-func-ungetc IS)))))
|