1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
### pyhegp --- Homomorphic encryption of genotypes and phenotypes
### Copyright © 2025–2026 Arun Isaac <arunisaac@systemreboot.net>
###
### This file is part of pyhegp.
###
### pyhegp is free software: you can redistribute it and/or modify it
### under the terms of the GNU General Public License as published by
### the Free Software Foundation, either version 3 of the License, or
### (at your option) any later version.
###
### pyhegp is distributed in the hope that it will be useful, but
### WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
### General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with pyhegp. If not, see <https://www.gnu.org/licenses/>.
from hypothesis import strategies as st
from hypothesis.extra.pandas import column, columns, data_frames, range_indexes
import pandas as pd
from scipy.stats import special_ortho_group
from typing import assert_never
from pyhegp.serialization import Summary, is_genotype_metadata_column, is_phenotype_metadata_column
from pyhegp.utils import negate
tabless_printable_ascii_text = st.text(
# Exclude control characters and tab.
st.characters(codec="ascii",
exclude_categories=("Cc",),
exclude_characters=("\t",)),
min_size=1)
chromosomes = tabless_printable_ascii_text
positions = st.integers(min_value=0,
max_value=10*10**9)
references = st.text(st.characters(codec="ascii",
categories=(),
include_characters=("A", "G", "C", "T")),
min_size=1,
max_size=1)
sample_names = (tabless_printable_ascii_text
.filter(negate(is_genotype_metadata_column)))
def genotype_metadata(draw, number_of_snps, reference_present):
match list(zip(*draw(st.lists(st.tuples(chromosomes, positions, references)
if reference_present
else st.tuples(chromosomes, positions),
min_size=number_of_snps,
max_size=number_of_snps,
unique=True)))):
case []:
return pd.DataFrame({"chromosome": pd.Series(dtype="str"),
"position": pd.Series(dtype="int")}
| ({"reference": pd.Series(dtype="str")}
if reference_present else {}))
case chromosomes_lst, positions_lst, *references_lst:
return pd.DataFrame({"chromosome": pd.Series(chromosomes_lst, dtype="str"),
"position": pd.Series(positions_lst, dtype="int")}
| ({"reference": pd.Series(*references_lst, dtype="str")}
if reference_present else {}))
case _ as unreachable:
assert_never(unreachable)
@st.composite
def summaries(draw):
stats = draw(data_frames(
columns=columns(["mean", "std"],
dtype="float64",
elements=st.floats(allow_nan=False))))
return Summary(draw(st.integers()),
pd.concat((genotype_metadata(draw,
len(stats),
draw(st.booleans())),
stats),
axis="columns"))
@st.composite
def genotype_frames(draw,
number_of_samples=st.integers(min_value=0,
max_value=10),
reference_present=st.booleans()):
_number_of_samples = draw(number_of_samples)
dosages = draw(data_frames(
columns=columns(draw(st.lists(sample_names,
min_size=_number_of_samples,
max_size=_number_of_samples,
unique=True)),
dtype="float64",
elements=st.floats(min_value=0,
max_value=100,
allow_nan=False))))
return pd.concat((genotype_metadata(draw,
len(dosages),
draw(reference_present)),
dosages),
axis="columns")
phenotype_names = st.lists(tabless_printable_ascii_text
.filter(negate(is_phenotype_metadata_column)),
unique=True)
@st.composite
def phenotype_frames(draw,
number_of_samples=st.integers(min_value=0,
max_value=10),
intercept_present=st.booleans()):
_number_of_samples = draw(number_of_samples)
return draw(data_frames(
columns=([column(name="sample-id",
dtype="str",
elements=tabless_printable_ascii_text,
unique=True)]
+ ([column(name="intercept",
dtype="float64",
elements=st.floats(min_value=-1,
max_value=1,
allow_nan=False))]
if draw(intercept_present)
else [])
+ columns(draw(phenotype_names),
dtype="float64",
elements=st.floats(min_value=-1000,
max_value=1000,
allow_nan=False))),
index=range_indexes(min_size=_number_of_samples,
max_size=_number_of_samples)))
@st.composite
def keys(draw, size):
return (special_ortho_group(draw(size),
seed=draw(st.integers(min_value=0,
max_value=2**32-1)))
.rvs())
|