aboutsummaryrefslogtreecommitdiff
path: root/contrib/cone-vector.py
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/cone-vector.py')
-rw-r--r--contrib/cone-vector.py76
1 files changed, 76 insertions, 0 deletions
diff --git a/contrib/cone-vector.py b/contrib/cone-vector.py
new file mode 100644
index 0000000..6effe53
--- /dev/null
+++ b/contrib/cone-vector.py
@@ -0,0 +1,76 @@
+# cone-vector.py --- A Python implementation of cone sampling
+# Copyright © 2021 Arun I <arunisaac@systemreboot.net>
+# Copyright © 2021 Murugesan Venkatapathi <murugesh@iisc.ac.in>
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see
+# <https://www.gnu.org/licenses/>.
+
+from numpy import arcsin, concatenate, cos, dot, ones, sin, sqrt, tan, pi
+from numpy.random import randn, random
+from numpy.linalg import norm
+from scipy.special import betainc, betaincinv, gamma
+
+def random_vector_on_sphere (dim):
+ x = randn(dim)
+ return x / norm(x)
+
+def surface_area_of_ball (dim):
+ return 2 * pi**(dim/2) / gamma(dim/2)
+
+def planar_angle2solid_angle_fraction (planar_angle, dim):
+ alpha = (dim - 1) / 2
+ beta = 1/2
+ x = sin(planar_angle)**2
+ if planar_angle < pi/2:
+ return 0.5*betainc(alpha, beta, x)
+ else:
+ return 1 - 0.5*betainc(alpha, beta, x)
+
+def solid_angle_fraction2planar_angle (solid_angle_fraction, dim):
+ alpha = (dim - 1) / 2
+ beta = 1/2
+ sn = surface_area_of_ball(dim)
+ if solid_angle_fraction < 1/2:
+ planar_angle = betaincinv(alpha, beta, 2*solid_angle_fraction)
+ else:
+ planar_angle = betaincinv(alpha, beta, 2*(1-solid_angle_fraction))
+ return arcsin(sqrt(planar_angle))
+
+def rotate_from_nth_canonical (x, axis):
+ xn = x[-1]
+ axisn = axis[-1]
+ if axisn != 1:
+ b = norm(axis[:-1])
+ a = (dot(x, axis) - xn*axisn) / b
+ s = sqrt(1 - axisn**2)
+ x = x + (xn*s + a*(axisn - 1))/b * axis
+ x[-1] = x[-1] + xn*(axisn - 1) - a*s \
+ - axisn*(xn*s + a*(axisn - 1))/b
+ return x
+
+def random_vector_on_spherical_cap (axis, maximum_planar_angle):
+ dim = axis.size
+ maximum_solid_angle_fraction = planar_angle2solid_angle_fraction(maximum_planar_angle, dim)
+ x = random_vector_on_sphere(dim - 1) \
+ * cos(maximum_planar_angle) \
+ * tan(solid_angle_fraction2planar_angle(maximum_solid_angle_fraction*random(), dim))
+ x = concatenate([x, [cos(maximum_planar_angle)]])
+ return rotate_from_nth_canonical(x / norm(x), axis)
+
+# Sample code exercising the above functions
+dim = 100
+maximum_planar_angle = pi/3
+axis = ones(dim)
+axis = axis/norm(axis)
+print(random_vector_on_spherical_cap(axis, maximum_planar_angle))