diff options
Diffstat (limited to 'contrib/cone-vector.py')
-rw-r--r-- | contrib/cone-vector.py | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/contrib/cone-vector.py b/contrib/cone-vector.py new file mode 100644 index 0000000..6effe53 --- /dev/null +++ b/contrib/cone-vector.py @@ -0,0 +1,76 @@ +# cone-vector.py --- A Python implementation of cone sampling +# Copyright © 2021 Arun I <arunisaac@systemreboot.net> +# Copyright © 2021 Murugesan Venkatapathi <murugesh@iisc.ac.in> +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see +# <https://www.gnu.org/licenses/>. + +from numpy import arcsin, concatenate, cos, dot, ones, sin, sqrt, tan, pi +from numpy.random import randn, random +from numpy.linalg import norm +from scipy.special import betainc, betaincinv, gamma + +def random_vector_on_sphere (dim): + x = randn(dim) + return x / norm(x) + +def surface_area_of_ball (dim): + return 2 * pi**(dim/2) / gamma(dim/2) + +def planar_angle2solid_angle_fraction (planar_angle, dim): + alpha = (dim - 1) / 2 + beta = 1/2 + x = sin(planar_angle)**2 + if planar_angle < pi/2: + return 0.5*betainc(alpha, beta, x) + else: + return 1 - 0.5*betainc(alpha, beta, x) + +def solid_angle_fraction2planar_angle (solid_angle_fraction, dim): + alpha = (dim - 1) / 2 + beta = 1/2 + sn = surface_area_of_ball(dim) + if solid_angle_fraction < 1/2: + planar_angle = betaincinv(alpha, beta, 2*solid_angle_fraction) + else: + planar_angle = betaincinv(alpha, beta, 2*(1-solid_angle_fraction)) + return arcsin(sqrt(planar_angle)) + +def rotate_from_nth_canonical (x, axis): + xn = x[-1] + axisn = axis[-1] + if axisn != 1: + b = norm(axis[:-1]) + a = (dot(x, axis) - xn*axisn) / b + s = sqrt(1 - axisn**2) + x = x + (xn*s + a*(axisn - 1))/b * axis + x[-1] = x[-1] + xn*(axisn - 1) - a*s \ + - axisn*(xn*s + a*(axisn - 1))/b + return x + +def random_vector_on_spherical_cap (axis, maximum_planar_angle): + dim = axis.size + maximum_solid_angle_fraction = planar_angle2solid_angle_fraction(maximum_planar_angle, dim) + x = random_vector_on_sphere(dim - 1) \ + * cos(maximum_planar_angle) \ + * tan(solid_angle_fraction2planar_angle(maximum_solid_angle_fraction*random(), dim)) + x = concatenate([x, [cos(maximum_planar_angle)]]) + return rotate_from_nth_canonical(x / norm(x), axis) + +# Sample code exercising the above functions +dim = 100 +maximum_planar_angle = pi/3 +axis = ones(dim) +axis = axis/norm(axis) +print(random_vector_on_spherical_cap(axis, maximum_planar_angle)) |