blob: 3259c063cc5d347816970ac4c4e1136c3f8b42f1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
; SILex - Scheme Implementation of Lex
; Copyright (C) 2001 Danny Dube'
;
; This program is free software; you can redistribute it and/or
; modify it under the terms of the GNU General Public License
; as published by the Free Software Foundation; either version 2
; of the License, or (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;
; Quelques definitions de constantes
;
(define eof-tok 0)
(define hblank-tok 1)
(define vblank-tok 2)
(define pipe-tok 3)
(define question-tok 4)
(define plus-tok 5)
(define star-tok 6)
(define lpar-tok 7)
(define rpar-tok 8)
(define dot-tok 9)
(define lbrack-tok 10)
(define lbrack-rbrack-tok 11)
(define lbrack-caret-tok 12)
(define lbrack-minus-tok 13)
(define subst-tok 14)
(define power-tok 15)
(define doublequote-tok 16)
(define char-tok 17)
(define caret-tok 18)
(define dollar-tok 19)
(define <<EOF>>-tok 20)
(define <<ERROR>>-tok 21)
(define percent-percent-tok 22)
(define id-tok 23)
(define rbrack-tok 24)
(define minus-tok 25)
(define illegal-tok 26)
; Tokens agreges
(define class-tok 27)
(define string-tok 28)
(define number-of-tokens 29)
(define newline-ch (char->integer #\newline))
(define tab-ch (char->integer #\ ))
(define dollar-ch (char->integer #\$))
(define minus-ch (char->integer #\-))
(define rbrack-ch (char->integer #\]))
(define caret-ch (char->integer #\^))
(define dot-class (list (cons 'inf- (- newline-ch 1))
(cons (+ newline-ch 1) 'inf+)))
(define default-action
(string-append " (yycontinue)" (string #\newline)))
(define default-<<EOF>>-action
(string-append " '(0)" (string #\newline)))
(define default-<<ERROR>>-action
(string-append " (begin"
(string #\newline)
" (display \"Error: Invalid token.\")"
(string #\newline)
" (newline)"
(string #\newline)
" 'error)"
(string #\newline)))
;
; Fabrication de tables de dispatch
;
(define make-dispatch-table
(lambda (size alist default)
(let ((v (make-vector size default)))
(let loop ((alist alist))
(if (null? alist)
v
(begin
(vector-set! v (caar alist) (cdar alist))
(loop (cdr alist))))))))
;
; Fonctions de manipulation des tokens
;
(define make-tok
(lambda (tok-type lexeme line column . attr)
(cond ((null? attr)
(vector tok-type line column lexeme))
((null? (cdr attr))
(vector tok-type line column lexeme (car attr)))
(else
(vector tok-type line column lexeme (car attr) (cadr attr))))))
(define get-tok-type (lambda (tok) (vector-ref tok 0)))
(define get-tok-line (lambda (tok) (vector-ref tok 1)))
(define get-tok-column (lambda (tok) (vector-ref tok 2)))
(define get-tok-lexeme (lambda (tok) (vector-ref tok 3)))
(define get-tok-attr (lambda (tok) (vector-ref tok 4)))
(define get-tok-2nd-attr (lambda (tok) (vector-ref tok 5)))
;
; Fonctions de manipulations des regles
;
(define make-rule
(lambda (line eof? error? bol? eol? regexp action)
(vector line eof? error? bol? eol? regexp action #f)))
(define get-rule-line (lambda (rule) (vector-ref rule 0)))
(define get-rule-eof? (lambda (rule) (vector-ref rule 1)))
(define get-rule-error? (lambda (rule) (vector-ref rule 2)))
(define get-rule-bol? (lambda (rule) (vector-ref rule 3)))
(define get-rule-eol? (lambda (rule) (vector-ref rule 4)))
(define get-rule-regexp (lambda (rule) (vector-ref rule 5)))
(define get-rule-action (lambda (rule) (vector-ref rule 6)))
(define get-rule-yytext? (lambda (rule) (vector-ref rule 7)))
(define set-rule-regexp (lambda (rule regexp) (vector-set! rule 5 regexp)))
(define set-rule-action (lambda (rule action) (vector-set! rule 6 action)))
(define set-rule-yytext? (lambda (rule yytext?) (vector-set! rule 7 yytext?)))
;
; Noeuds des regexp
;
(define epsilon-re 0)
(define or-re 1)
(define conc-re 2)
(define star-re 3)
(define plus-re 4)
(define question-re 5)
(define class-re 6)
(define char-re 7)
(define make-re
(lambda (re-type . lattr)
(cond ((null? lattr)
(vector re-type))
((null? (cdr lattr))
(vector re-type (car lattr)))
((null? (cddr lattr))
(vector re-type (car lattr) (cadr lattr))))))
(define get-re-type (lambda (re) (vector-ref re 0)))
(define get-re-attr1 (lambda (re) (vector-ref re 1)))
(define get-re-attr2 (lambda (re) (vector-ref re 2)))
;
; Fonctions de manipulation des ensembles d'etats
;
; Intersection de deux ensembles d'etats
(define ss-inter
(lambda (ss1 ss2)
(cond ((null? ss1)
'())
((null? ss2)
'())
(else
(let ((t1 (car ss1))
(t2 (car ss2)))
(cond ((< t1 t2)
(ss-inter (cdr ss1) ss2))
((= t1 t2)
(cons t1 (ss-inter (cdr ss1) (cdr ss2))))
(else
(ss-inter ss1 (cdr ss2)))))))))
; Difference entre deux ensembles d'etats
(define ss-diff
(lambda (ss1 ss2)
(cond ((null? ss1)
'())
((null? ss2)
ss1)
(else
(let ((t1 (car ss1))
(t2 (car ss2)))
(cond ((< t1 t2)
(cons t1 (ss-diff (cdr ss1) ss2)))
((= t1 t2)
(ss-diff (cdr ss1) (cdr ss2)))
(else
(ss-diff ss1 (cdr ss2)))))))))
; Union de deux ensembles d'etats
(define ss-union
(lambda (ss1 ss2)
(cond ((null? ss1)
ss2)
((null? ss2)
ss1)
(else
(let ((t1 (car ss1))
(t2 (car ss2)))
(cond ((< t1 t2)
(cons t1 (ss-union (cdr ss1) ss2)))
((= t1 t2)
(cons t1 (ss-union (cdr ss1) (cdr ss2))))
(else
(cons t2 (ss-union ss1 (cdr ss2))))))))))
; Decoupage de deux ensembles d'etats
(define ss-sep
(lambda (ss1 ss2)
(let loop ((ss1 ss1) (ss2 ss2) (l '()) (c '()) (r '()))
(if (null? ss1)
(if (null? ss2)
(vector (reverse l) (reverse c) (reverse r))
(loop ss1 (cdr ss2) l c (cons (car ss2) r)))
(if (null? ss2)
(loop (cdr ss1) ss2 (cons (car ss1) l) c r)
(let ((t1 (car ss1))
(t2 (car ss2)))
(cond ((< t1 t2)
(loop (cdr ss1) ss2 (cons t1 l) c r))
((= t1 t2)
(loop (cdr ss1) (cdr ss2) l (cons t1 c) r))
(else
(loop ss1 (cdr ss2) l c (cons t2 r))))))))))
;
; Fonctions de manipulation des classes de caracteres
;
; Comparaisons de bornes d'intervalles
(define class-= eqv?)
(define class-<=
(lambda (b1 b2)
(cond ((eq? b1 'inf-) #t)
((eq? b2 'inf+) #t)
((eq? b1 'inf+) #f)
((eq? b2 'inf-) #f)
(else (<= b1 b2)))))
(define class->=
(lambda (b1 b2)
(cond ((eq? b1 'inf+) #t)
((eq? b2 'inf-) #t)
((eq? b1 'inf-) #f)
((eq? b2 'inf+) #f)
(else (>= b1 b2)))))
(define class-<
(lambda (b1 b2)
(cond ((eq? b1 'inf+) #f)
((eq? b2 'inf-) #f)
((eq? b1 'inf-) #t)
((eq? b2 'inf+) #t)
(else (< b1 b2)))))
(define class->
(lambda (b1 b2)
(cond ((eq? b1 'inf-) #f)
((eq? b2 'inf+) #f)
((eq? b1 'inf+) #t)
((eq? b2 'inf-) #t)
(else (> b1 b2)))))
; Complementation d'une classe
(define class-compl
(lambda (c)
(let loop ((c c) (start 'inf-))
(if (null? c)
(list (cons start 'inf+))
(let* ((r (car c))
(rstart (car r))
(rend (cdr r)))
(if (class-< start rstart)
(cons (cons start (- rstart 1))
(loop c rstart))
(if (class-< rend 'inf+)
(loop (cdr c) (+ rend 1))
'())))))))
; Union de deux classes de caracteres
(define class-union
(lambda (c1 c2)
(let loop ((c1 c1) (c2 c2) (u '()))
(if (null? c1)
(if (null? c2)
(reverse u)
(loop c1 (cdr c2) (cons (car c2) u)))
(if (null? c2)
(loop (cdr c1) c2 (cons (car c1) u))
(let* ((r1 (car c1))
(r2 (car c2))
(r1start (car r1))
(r1end (cdr r1))
(r2start (car r2))
(r2end (cdr r2)))
(if (class-<= r1start r2start)
(cond ((class-= r1end 'inf+)
(loop c1 (cdr c2) u))
((class-< (+ r1end 1) r2start)
(loop (cdr c1) c2 (cons r1 u)))
((class-<= r1end r2end)
(loop (cdr c1)
(cons (cons r1start r2end) (cdr c2))
u))
(else
(loop c1 (cdr c2) u)))
(cond ((class-= r2end 'inf+)
(loop (cdr c1) c2 u))
((class-> r1start (+ r2end 1))
(loop c1 (cdr c2) (cons r2 u)))
((class->= r1end r2end)
(loop (cons (cons r2start r1end) (cdr c1))
(cdr c2)
u))
(else
(loop (cdr c1) c2 u))))))))))
; Decoupage de deux classes de caracteres
(define class-sep
(lambda (c1 c2)
(let loop ((c1 c1) (c2 c2) (l '()) (c '()) (r '()))
(if (null? c1)
(if (null? c2)
(vector (reverse l) (reverse c) (reverse r))
(loop c1 (cdr c2) l c (cons (car c2) r)))
(if (null? c2)
(loop (cdr c1) c2 (cons (car c1) l) c r)
(let* ((r1 (car c1))
(r2 (car c2))
(r1start (car r1))
(r1end (cdr r1))
(r2start (car r2))
(r2end (cdr r2)))
(cond ((class-< r1start r2start)
(if (class-< r1end r2start)
(loop (cdr c1) c2 (cons r1 l) c r)
(loop (cons (cons r2start r1end) (cdr c1)) c2
(cons (cons r1start (- r2start 1)) l) c r)))
((class-> r1start r2start)
(if (class-> r1start r2end)
(loop c1 (cdr c2) l c (cons r2 r))
(loop c1 (cons (cons r1start r2end) (cdr c2))
l c (cons (cons r2start (- r1start 1)) r))))
(else
(cond ((class-< r1end r2end)
(loop (cdr c1)
(cons (cons (+ r1end 1) r2end) (cdr c2))
l (cons r1 c) r))
((class-= r1end r2end)
(loop (cdr c1) (cdr c2) l (cons r1 c) r))
(else
(loop (cons (cons (+ r2end 1) r1end) (cdr c1))
(cdr c2)
l (cons r2 c) r)))))))))))
; Transformer une classe (finie) de caracteres en une liste de ...
(define class->char-list
(lambda (c)
(let loop1 ((c c))
(if (null? c)
'()
(let* ((r (car c))
(rend (cdr r))
(tail (loop1 (cdr c))))
(let loop2 ((rstart (car r)))
(if (<= rstart rend)
(cons (integer->char rstart) (loop2 (+ rstart 1)))
tail)))))))
; Transformer une classe de caracteres en une liste poss. compl.
; 1er element = #t -> classe complementee
(define class->tagged-char-list
(lambda (c)
(let* ((finite? (or (null? c) (number? (caar c))))
(c2 (if finite? c (class-compl c)))
(c-l (class->char-list c2)))
(cons (not finite?) c-l))))
;
; Fonction digraph
;
; Fonction "digraph".
; Etant donne un graphe dirige dont les noeuds comportent une valeur,
; calcule pour chaque noeud la "somme" des valeurs contenues dans le
; noeud lui-meme et ceux atteignables a partir de celui-ci. La "somme"
; consiste a appliquer un operateur commutatif et associatif aux valeurs
; lorsqu'elles sont additionnees.
; L'entree consiste en un vecteur de voisinages externes, un autre de
; valeurs initiales et d'un operateur.
; La sortie est un vecteur de valeurs finales.
(define digraph
(lambda (arcs init op)
(let* ((nbnodes (vector-length arcs))
(infinity nbnodes)
(prio (make-vector nbnodes -1))
(stack (make-vector nbnodes #f))
(sp 0)
(final (make-vector nbnodes #f)))
(letrec ((store-final
(lambda (self-sp value)
(let loop ()
(if (> sp self-sp)
(let ((voisin (vector-ref stack (- sp 1))))
(vector-set! prio voisin infinity)
(set! sp (- sp 1))
(vector-set! final voisin value)
(loop))))))
(visit-node
(lambda (n)
(let ((self-sp sp))
(vector-set! prio n self-sp)
(vector-set! stack sp n)
(set! sp (+ sp 1))
(vector-set! final n (vector-ref init n))
(let loop ((vois (vector-ref arcs n)))
(if (pair? vois)
(let* ((v (car vois))
(vprio (vector-ref prio v)))
(if (= vprio -1)
(visit-node v))
(vector-set! prio n (min (vector-ref prio n)
(vector-ref prio v)))
(vector-set! final n (op (vector-ref final n)
(vector-ref final v)))
(loop (cdr vois)))))
(if (= (vector-ref prio n) self-sp)
(store-final self-sp (vector-ref final n)))))))
(let loop ((n 0))
(if (< n nbnodes)
(begin
(if (= (vector-ref prio n) -1)
(visit-node n))
(loop (+ n 1)))))
final))))
;
; Fonction de tri
;
(define merge-sort-merge
(lambda (l1 l2 cmp-<=)
(cond ((null? l1)
l2)
((null? l2)
l1)
(else
(let ((h1 (car l1))
(h2 (car l2)))
(if (cmp-<= h1 h2)
(cons h1 (merge-sort-merge (cdr l1) l2 cmp-<=))
(cons h2 (merge-sort-merge l1 (cdr l2) cmp-<=))))))))
(define merge-sort
(lambda (l cmp-<=)
(if (null? l)
l
(let loop1 ((ll (map list l)))
(if (null? (cdr ll))
(car ll)
(loop1
(let loop2 ((ll ll))
(cond ((null? ll)
ll)
((null? (cdr ll))
ll)
(else
(cons (merge-sort-merge (car ll) (cadr ll) cmp-<=)
(loop2 (cddr ll))))))))))))
|