diff options
author | Arun Isaac | 2021-03-25 15:20:38 +0530 |
---|---|---|
committer | Arun Isaac | 2021-03-25 15:20:38 +0530 |
commit | 1e3766a74e1deaa36964be981e9c3273f156e22b (patch) | |
tree | 3857af80d71ac3e1a063611381ab17898fea150f /src/samball/samball.py | |
download | sambal-1e3766a74e1deaa36964be981e9c3273f156e22b.tar.gz sambal-1e3766a74e1deaa36964be981e9c3273f156e22b.tar.lz sambal-1e3766a74e1deaa36964be981e9c3273f156e22b.zip |
Initial commit
Diffstat (limited to 'src/samball/samball.py')
-rw-r--r-- | src/samball/samball.py | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/src/samball/samball.py b/src/samball/samball.py new file mode 100644 index 0000000..e5d84ad --- /dev/null +++ b/src/samball/samball.py @@ -0,0 +1,100 @@ +# samball --- Sample n-dimensional balls +# Copyright © 2021 Arun I <arunisaac@systemreboot.net> +# Copyright © 2021 Murugesan Venkatapathi <murugesh@iisc.ac.in> +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see +# <https://www.gnu.org/licenses/>. + +from numpy import arcsin, cos, dot, empty, log, ones, sin, sqrt, pi, where +from numpy.random import randn, random +from numpy.linalg import norm +from scipy.special import betainc, betaincinv + +def random_vector_on_sphere(dim): + """Return a random vector uniformly distributed on the unit sphere.""" + x = randn(dim) + return x / norm(x) + +def planar_angle2solid_angle_fraction(planar_angle, dim): + """Return the solid angle fraction for a given planar angle.""" + alpha = (dim - 1) / 2 + beta = 1/2 + return where(planar_angle < pi/2, + 0.5*betainc(alpha, beta, sin(planar_angle)**2), + 1 - 0.5*betainc(alpha, beta, sin(planar_angle)**2)) + +def solid_angle_fraction2planar_angle(solid_angle_fraction, dim): + """Return the planar angle for a given solid angle fraction.""" + alpha = (dim - 1) / 2 + beta = 1/2 + return where(solid_angle_fraction < 1/2, + arcsin(sqrt(betaincinv(alpha, beta, 2*solid_angle_fraction))), + pi - arcsin(sqrt(betaincinv(alpha, beta, 2*(1-solid_angle_fraction))))) + +def rotate_from_nth_canonical(x, axis): + """Rotate vector from around the nth canonical axis to the given axis. + """ + xn = x[-1] + axisn = axis[-1] + if axisn != 1: + b = norm(axis[:-1]) + a = (dot(x, axis) - xn*axisn) / b + s = sqrt(1 - axisn**2) + x = x + (xn*s + a*(axisn - 1))/b * axis + x[-1] = x[-1] + xn*(axisn - 1) - a*s \ + - axisn*(xn*s + a*(axisn - 1))/b + return x + +def random_planar_angle_cdf(maximum_planar_angle, dim): + """Return a random planar angle using inverse transform sampling.""" + return solid_angle_fraction2planar_angle( + planar_angle2solid_angle_fraction(maximum_planar_angle, dim)*random(), + dim) + +def random_planar_angle_pdf(maximum_planar_angle, dim): + """Return a random planar angle using rejection sampling.""" + # We apply the log function just to prevent the floats from + # underflowing. + box_height = (dim-2)*log(sin(min(maximum_planar_angle, pi/2))) + while True: + theta = maximum_planar_angle*random() + f = box_height + log(random()) + if f < (dim-2)*log(sin(theta)): + return theta + +def random_vector_on_disk(axis, planar_angle): + """Return a random vector uniformly distributed on the periphery of a +disk.""" + dim = axis.size + x = empty(dim) + x[:-1] = sin(planar_angle) * random_vector_on_sphere(dim - 1) + x[-1] = cos(planar_angle) + return rotate_from_nth_canonical(x, axis) + +def random_vector_on_spherical_cap_cdf(axis, maximum_planar_angle): + """Return a random vector uniformly distributed on a spherical +cap. The random planar angle is generated using inverse transform +sampling.""" + return random_vector_on_disk(axis, random_planar_angle_cdf(maximum_planar_angle, axis.size)) + +def random_vector_on_spherical_cap_pdf(axis, maximum_planar_angle): + """Return a random vector uniformly distributed on a spherical +cap. The random planar angle is generated using rejection sampling. + +This function is more numerically stable than +random_vector_on_spherical_cap_cdf for large dimensions and small +angles. + + """ + return random_vector_on_disk(axis, random_planar_angle_pdf(maximum_planar_angle, axis.size)) |