# sambal --- Sample balls, spheres, spherical caps # Copyright © 2021 Arun I <arunisaac@systemreboot.net> # Copyright © 2021 Murugesan Venkatapathi <murugesh@iisc.ac.in> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # <https://www.gnu.org/licenses/>. import pytest from numpy import arccos, dot, ones, pi, sin, where from numpy.linalg import norm from numpy.random import default_rng from scipy.special import betainc from scipy.stats import kstest from sambal import random_on_cap # Set seed of random number generator. rng = default_rng(0) def planar_angle2solid_angle_fraction(planar_angle, dim): """Return the solid angle fraction for a given planar angle.""" alpha = (dim - 1) / 2 beta = 1/2 return where(planar_angle < pi/2, 0.5*betainc(alpha, beta, sin(planar_angle)**2), 1 - 0.5*betainc(alpha, beta, sin(planar_angle)**2)) def make_uniform_cdf(maximum_planar_angle, dim): """Return the CDF of theta uniformly distributed on the spherical cap. """ def cdf(theta): return where(theta > maximum_planar_angle, 1, planar_angle2solid_angle_fraction(theta, dim) / planar_angle2solid_angle_fraction(maximum_planar_angle, dim)) return cdf dimensions = [10, 100, 1000, 5000] testdata = [*[(dim, 0.35*pi) for dim in dimensions], *[(dim, 0.65*pi) for dim in dimensions]] @pytest.mark.parametrize("dim,maximum_planar_angle", testdata) def test_random_on_cap(dim, maximum_planar_angle): axis = ones(dim) axis = axis / norm(axis) thetas = [arccos(dot(random_on_cap(axis, maximum_planar_angle, rng), axis)) for i in range(1000)] assert kstest(thetas, make_uniform_cdf(maximum_planar_angle, dim)).statistic < 0.05