From b6e2f7875029d1a5a0f6f7a5761b5f3af1f7b448 Mon Sep 17 00:00:00 2001 From: Arun Isaac Date: Fri, 26 Mar 2021 14:43:07 +0530 Subject: Simplify directory structure. * setup.cfg: Specify the sambal package explicitly. * src/sambal: Move to sambal. --- src/sambal/__init__.py | 0 src/sambal/sambal.py | 65 -------------------------------------------------- 2 files changed, 65 deletions(-) delete mode 100644 src/sambal/__init__.py delete mode 100644 src/sambal/sambal.py (limited to 'src') diff --git a/src/sambal/__init__.py b/src/sambal/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/src/sambal/sambal.py b/src/sambal/sambal.py deleted file mode 100644 index c42ea44..0000000 --- a/src/sambal/sambal.py +++ /dev/null @@ -1,65 +0,0 @@ -# sambal --- Sample balls, spheres, spherical caps -# Copyright © 2021 Arun I -# Copyright © 2021 Murugesan Venkatapathi -# -# This program is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, but -# WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program. If not, see -# . - -from numpy import cos, dot, empty, log, sin, sqrt, pi -from numpy.random import randn, random -from numpy.linalg import norm - -def random_on_sphere(dim): - """Return a random vector uniformly distributed on the unit sphere.""" - x = randn(dim) - return x / norm(x) - -def rotate_from_nth_canonical(x, axis): - """Rotate vector from around the nth canonical axis to the given axis. - """ - xn = x[-1] - axisn = axis[-1] - if axisn != 1: - b = norm(axis[:-1]) - a = (dot(x, axis) - xn*axisn) / b - s = sqrt(1 - axisn**2) - x = x + (xn*s + a*(axisn - 1))/b * axis - x[-1] = x[-1] + xn*(axisn - 1) - a*s \ - - axisn*(xn*s + a*(axisn - 1))/b - return x - -def random_on_disk(axis, planar_angle): - """Return a random vector uniformly distributed on the periphery of a -disk.""" - dim = axis.size - x = empty(dim) - x[:-1] = sin(planar_angle) * random_on_sphere(dim - 1) - x[-1] = cos(planar_angle) - return rotate_from_nth_canonical(x, axis) - -def random_on_cap(axis, maximum_planar_angle): - """Return a random vector uniformly distributed on a spherical -cap. The random planar angle is generated using rejection sampling. - - """ - # We apply the log function just to prevent the floats from - # underflowing. - dim = axis.size - box_height = (dim-2)*log(sin(min(maximum_planar_angle, pi/2))) - while True: - theta = maximum_planar_angle*random() - f = box_height + log(random()) - if f < (dim-2)*log(sin(theta)): - break - return random_on_disk(axis, theta) -- cgit v1.2.3