#include <gsl/gsl_blas.h> #include <gsl/gsl_math.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_sf.h> #include <gsl/gsl_sf_gamma.h> #include "utils.h" // This function exists so that guile code can access the value of // M_PI as provided by <gsl_math.h>. double pi () { /** @return Value of pi **/ return M_PI; } double volume_of_ball (unsigned int dimension) { /** @param dimension Dimension of the ball (2 for a circle, 3 for a sphere, etc.) @return Volume of the unit ball **/ return exp(ln_volume_of_ball(dimension)); } double ln_volume_of_ball (unsigned int dimension) { /** @param dimension Dimension of the ball (2 for a circle, 3 for a sphere, etc.) @return Natural logarithm of the volume of the unit ball **/ return (dimension/2.0)*M_LNPI - gsl_sf_lngamma(1 + dimension/2.0); } double surface_area_of_ball (unsigned int dimension) { /** @param dimension Dimension of the ball (2 for a circle, 3 for a sphere, etc.) @return Surface area of the unit ball **/ return dimension * volume_of_ball(dimension); } double ln_surface_area_of_ball (unsigned int dimension) { /** @param dimension Dimension of the ball (2 for a circle, 3 for a sphere, etc.) @return Natural logarithm of the surface area of the unit ball **/ return log(dimension) + ln_volume_of_ball(dimension); } double lower_incomplete_gamma (double s, double x) { return gsl_sf_gamma(s) * gsl_sf_gamma_inc_P(s, x); } double angle_between_vectors (const gsl_vector* x, const gsl_vector* y) { /** @param x Vector 1 @param y Vector 2 @return Angle between the two vectors in the range [0, pi] **/ double dot_product; gsl_blas_ddot(x, y, &dot_product); // TODO: Is this a valid floating point comparison? if (dot_product != 0) return acos(dot_product / gsl_blas_dnrm2(x) / gsl_blas_dnrm2(y)); else return 0; } double dot_product (const gsl_vector* x, const gsl_vector* y) { /** @param x Vector 1 @param y Vector 2 @return Dot product between the two vectors **/ double result; gsl_blas_ddot(x, y, &result); return result; } double gaussian_pdf (double x) { /** @param x @return exp(-x^2/2) / sqrt(2*pi) **/ return gsl_ran_gaussian_pdf(x, 1.0); } double gaussian_cdf (double x) { /** @param x @return int_{-inf}^x gaussian_pdf(t) dt **/ return 0.5*(1 + gsl_sf_erf(x/M_SQRT2)); } double rerror (double approx, double exact) { /** @param approx Approximate value @param exact Exact value @return Relative error **/ return fabs(1 - approx/exact); } #define BISECTION_EPSABS 0 #define BISECTION_EPSREL 1e-6 #define BISECTION_MAX_ITERATIONS 1000 #define BISECTION_FUNCTION_EPSABS 1e-9 double bisection (gsl_function* f, double a, double b) { const gsl_root_fsolver_type* T = gsl_root_fsolver_bisection; gsl_root_fsolver* s = gsl_root_fsolver_alloc(T); double solution; int status; void error_handler (const char* reason, const char* file, int line, int gsl_errno) { fprintf(stderr, "Bisection error handler invoked.\n"); fprintf(stderr, "f(%g) = %g\n", a, GSL_FN_EVAL(f, a)); fprintf(stderr, "f(%g) = %g\n", b, GSL_FN_EVAL(f, b)); fprintf(stderr, "gsl: %s:%d: ERROR: %s\n", file, line, reason); abort(); } gsl_error_handler_t* old_handler = gsl_set_error_handler(error_handler); gsl_root_fsolver_set(s, f, a, b); do { status = gsl_root_fsolver_iterate (s); solution = gsl_root_fsolver_root (s); a = gsl_root_fsolver_x_lower (s); b = gsl_root_fsolver_x_upper (s); status = gsl_root_test_interval (a, b, BISECTION_EPSABS, BISECTION_EPSREL); } while (status == GSL_CONTINUE); gsl_root_fsolver_free(s); gsl_set_error_handler(old_handler); return solution; } double bisection_rlimit (gsl_function* f, double a, double b) { int sign = SIGNUM(GSL_FN_EVAL(f, a)); for (int i=0; i<BISECTION_MAX_ITERATIONS; i++) if (sign*GSL_FN_EVAL(f, b) > 0) b *= 2; else return b; fprintf(stderr, "Bisection bracketing failed\n"); exit(1); } #undef BISECTION_EPSABS #undef BISECTION_EPSREL #undef BISECTION_MAX_ITERATIONS #undef BISECTION_FUNCTION_EPSABS