# cone-vector.py --- A Python implementation of cone sampling # Copyright © 2021 Arun I # Copyright © 2021 Murugesan Venkatapathi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see # . from numpy import arcsin, cos, dot, empty, ones, sin, sqrt, tan, pi from numpy.random import randn, random from numpy.linalg import norm from scipy.special import betainc, betaincinv, gamma def random_vector_on_sphere (dim): x = randn(dim) return x / norm(x) def planar_angle2solid_angle_fraction (planar_angle, dim): alpha = (dim - 1) / 2 beta = 1/2 x = sin(planar_angle)**2 if planar_angle < pi/2: return 0.5*betainc(alpha, beta, x) else: return 1 - 0.5*betainc(alpha, beta, x) def solid_angle_fraction2planar_angle (solid_angle_fraction, dim): alpha = (dim - 1) / 2 beta = 1/2 if solid_angle_fraction < 1/2: planar_angle = betaincinv(alpha, beta, 2*solid_angle_fraction) else: planar_angle = betaincinv(alpha, beta, 2*(1-solid_angle_fraction)) return arcsin(sqrt(planar_angle)) def rotate_from_nth_canonical (x, axis): xn = x[-1] axisn = axis[-1] if axisn != 1: b = norm(axis[:-1]) a = (dot(x, axis) - xn*axisn) / b s = sqrt(1 - axisn**2) x = x + (xn*s + a*(axisn - 1))/b * axis x[-1] = x[-1] + xn*(axisn - 1) - a*s \ - axisn*(xn*s + a*(axisn - 1))/b return x def random_vector_on_spherical_cap (axis, maximum_planar_angle): dim = axis.size maximum_solid_angle_fraction = planar_angle2solid_angle_fraction(maximum_planar_angle, dim) x = empty(dim) x[:-1] = random_vector_on_sphere(dim - 1) \ * cos(maximum_planar_angle) \ * tan(solid_angle_fraction2planar_angle(maximum_solid_angle_fraction*random(), dim)) x[-1] = cos(maximum_planar_angle) return rotate_from_nth_canonical(x / norm(x), axis) # Sample code exercising the above functions dim = 100 maximum_planar_angle = pi/3 axis = ones(dim) axis = axis/norm(axis) print(random_vector_on_spherical_cap(axis, maximum_planar_angle))